Distinguishing characteristics

Pigeons are of compact shape, usually plump because of well-developed pectoral muscles, and have a relatively small head. The wings are long and often pointed in species that are highly migratory and in those that obtain most of their food in trees. A few island or montane species that fly less have reduced wings. A long, pointed tail, as in the extinct passenger pigeon and the masked dove (Oena capensis), is probably correlated with a high degree of maneuverability, necessary during a rapid escape from the ground in woodland. The partridgelike pigeons have short rounded wings and a short tail. These are mostly birds of woodland, keeping to the cover of trees and bushes, but in Australia there are species that live completely in the open and nest on the ground. One, the flock pigeon (Phaps histrionica), makes long flights to its feeding and drinking places and has long wings, in many respects apparently living like the sandgrouse of Africa and Eurasia.

Pigeons generally have short legs, but in those that resemble game birds the legs are lengthened for more effective terrestrial locomotion. Three toes point forward and one backward. The bill is usually small and soft and may be overhung by the fleshy operculum (cere), which is enlarged in some of the fruit pigeons and domesticated forms of Columba livia. The bill shape is associated with feeding habits, slender bills being typical of seed eaters and deeply hooked bills of fruit eaters, especially those like Treron, which feed on large hard fruits such as figs. This trend in bill development is seen to an exaggerated extent in the ground-feeding tooth-billed pigeon (Didunculus strigirostris), whose bill resembles that of the extinct dodo, a bird that may have had similar feeding behaviour. It tears and nibbles its food into small pieces in a manner reminiscent of the parrots, taking berries, fruit, and mountain plantain.

Pigeons have dense and soft plumage, the region in the vicinity of the eye often being bare. In most species the female is slightly duller than the male, but in some the sexes are identical, and in a few species there are marked differences in colour. One kind of sexual dimorphism, in which display plumage is confined to the male, is correlated in most other birds with a tendency toward polygamy; but it is not clear whether this is true in pigeons. Another kind of dimorphism involves the sexes’ being rather differently coloured. Thus the male of the orange dove (Ptilinopus victor) is brilliant orange, the female green; the male ruddy quail dove (Geotrygon montana) is purplish chestnut, the female brown. This trend seems to be associated with making the female, who does most if not all the incubation in these cases, more cryptic.

With the exception of Treron, most fruit pigeons have a broad, short intestine and can void intact the stones from fruits they have eaten. Seedeaters have stronger gizzards and long, narrow intestines.

Physiology and biochemistry

Domesticated pigeons and the Barbary dove have long served as subjects for avian physiological research, and knowledge related to their body functions is extensive. They appear to exhibit no remarkable specializations, compared with birds in general, with the exception that the crop becomes glandular in response to small amounts of the hormone prolactin. Prolactin was first discovered in pigeons by American zoologist Oscar Riddle in the 1930s, and pigeons still serve in the bioassay of this hormone from other sources. Prolactin also is produced by other birds. Among other functions, it reduces aggressive behaviour during the incubation and early brood-care stages of the reproductive cycle. It apparently is involved in the molting process and in mechanisms associated with preparation for migration. Pigeons are unique only in having secondarily evolved a new target organ responsive to the hormone.

Hungry Pelican waiting to be fed, beak open, Australia
More From Britannica
Why Don’t Birds Have Teeth?

The sense of taste, as with most other birds, is poorly developed, and it is probably not an important factor in selecting food. Shape and tactile characteristics and, to a lesser extent, colour are much more important. The average number of taste buds is only 37, confined to the soft area at the base of the tongue and palatine region (in contrast, humans have about 9,000 and rabbits about 17,000). Pigeons can, however, exhibit a surprising sensitivity to certain substances, such as acids; only at extremely low concentrations are acetic acid solutions accepted as readily as pure water. The olfactory organs are well developed, but smell seems to be of little significance in the daily lives of pigeons; experiments to demonstrate their olfactory abilities have yielded conflicting results. Visual acuity is highly developed, as in most other birds, although training experiments demonstrate that pigeons can attain an acuity little better than humans.

Evolution and paleontology

By the time they appear in the fossil record, the Columbiformes are already so well differentiated that their phylogenetic relations cannot be determined with certainty. The sandgrouse and pigeons resemble each other anatomically, but this may have resulted from convergence toward a similar mode of life. The earliest known pigeon is Gerandia calcaria from the early Miocene of France (about 23 million years ago), although the suborder probably arose in the Australasian region, where the greatest variety of modern columbiforms is found.

The dodoes and solitaires were highly specialized island forms that doubtless arose in the Mascarene Islands and were peculiar to those islands. Three species are known: the dodo (Raphus cucullatus) on Mauritius, the Réunion solitaire (R. solitarius), and the Rodrigues solitaire (Pezophaps solitaria). The dodoes and solitaires became extinct in about 1681, 1746, and 1791 respectively, as they fell easy prey to marauding sailors and could not compete with pigs and other introduced livestock. They were pigeonlike birds that had lost the power of flight in the safety of their predator-free island existence and had become large (as big as a turkey), heavily built birds with strong bills and feet. The wings had become rudimentary, and the sternum possessed only a small keel.

Classification

Distinguishing taxonomic features

The most important features distinguishing the Columbiformes are the structure of the skull, sternum, and furculum. The several species have close thick feathers set loosely in the skin, lack the fifth secondary feather of the wing, and possess a crop. The structure of the bill and nostrils, the arrangement of the sternotracheal musculature, and the presence or absence of intestinal ceca distinguish the suborders. Behavioral characteristics are of doubtful validity in relating suborder relationships because the similarities may have arisen by convergence. Blood antigen relationships may be considered more reliable.

Annotated classification

  • Order Columbiformes
    Birds in which the palatine processes of the maxillae do not meet in the midline (schizognathous) and with vomer absent or vestigial. Palatine and pterygoid bones articulate with basisphenoid rostrum. Basipterygoid processes present, except in family Raphidae. Sternum with large lateral and smaller inner incisions, these often fused to fenestrae. Furculum U-shaped and with hypocleideum little or not developed. Nares separated by a complete internasal septum. Hypotarsus complex. Plumage, close and thick, feathers loosely set in skin. 5th secondary quill absent (diastataxic). Oil gland naked or absent. Well-developed crop present.
    • Family Columbidae (pigeons and doves)
      Intestinal ceca absent or minute, syrinx with sterno-tracheal muscles asymmetrical. Young altricial (helpless) and hatched blind; without real down. Basal part of bill soft and covered with swollen skin that envelops the slitlike nostrils as a cap (operculum). External nasal opening into skull tapers behind into a narrow cleft running back into nasal bone (schizorhinal); 14–15 cervical vertebrae. 11 primary feathers, the outermost much reduced. Usually 12–14, and exceptionally 16–20, retrices. Crop bilobed. Nesting in tree holes or caves or building flimsy platform of sticks on trees or ground. Eggs usually white, except brown or cream in some quail doves. 2 eggs in most clutches, but some genera produce only 1. Length 15–80 cm (about 6–30 inches); weight 45–4000 grams (0.1–9 pounds). Wide range of colours, from grays and browns to striking orange, green, or purple. Worldwide except subpolar regions and some oceanic islands. Approximately 42 genera, 316 species.
    • Family Raphidae (dodoes and solitaires)
      Extinct but with no fossil record. Flightless, with much reduced furculum and wing, fused coracoid and scapula and no basipterygoid processes. Large; weight probably exceeded 10 kg (22 pounds). Limited to Mascarene Islands. 3 species.

Critical appraisal

The subordinal limits of the Columbiformes seem to be well defined. The pigeons and doves make up a natural group, and early 21st-century DNA analysis supports the close relationship of dodoes and solitaires to pigeons and doves. On anatomical grounds, sandgrouse resemble pigeons and were therefore placed in the same order for a time. After years of debate, however, DNA studies confirmed that the sandgrouse (Pteroclidae) should be placed in its own order (Pteroclidiformes); their resemblances to pigeons have been attributed to convergent evolution.

Ronald K. Murton