Nervous system and organs of sensation
The dorsal position, tubular structure, and epidermal origin of the central nervous system are definitive of the chordates, although some may see similarities with the hemichordates. The sensory structures are distinctive of the chordates and include the paired nasal, optic, and otic organs (along with the strongly differentiated head).
The nasal vesicle is variously open to the environment, and its sensory cells, as chemical receptors, are not unlike those in the taste buds of the mouth. The eye is the most complex organ of the head and is a lateral outpocketing of the anterior end of the brain tube. Later it acquires a lens of epidermal origin. The act of focusing the eye (accommodation) shows extensive adaptive variation among the different groups of vertebrates.
The otic vesicle starts from a simple sac formed by the invagination of an ectodermal placode. These developmental changes also include the changes of innervation. Whereas the original structure was basically an equilibrium adaptation, other functions, such as an awareness of movement or the sensation of the proximity of prey, developed.
The lateral-line system of canals and sensory organs is a unique vertebrate feature. The elements of this system are found on the head as well as the body. This system is related to the ear and presumably at its origin served a similar function. This system is lost in terrestrial vertebrate forms.
The digestive system
The digestive system of the vertebrate is distinctive in its structure but not in its function. The mouth and pharynx can be considered as parts of this system; the latter as an expanded cavity in the head is unmatched in any other group. The stomach and gut have been discussed above.
Presumably the original condition of the digestive glands was that of a ventral diverticulum which may have received the food mass into its cavity. This diverticulum, matched by the diverticulum seen in the amphioxus or the “intestine” of the tunicate, produced the secretions (bilelike and enzymes) of both liver and pancreas. Through time, the liver gradually differentiated from the pancreas. The size and separation of the liver from the gut suggest its separate blood and metabolic activities. The most obvious by-product of the liver, bile, necessitated the formation of a gall bladder and a duct connection with the gut. The pancreas, in contrast, continued to produce digestive enzymes, but its secretory cells were no longer in direct contact with the food mass. Because the pancreas was only a partial source of intestinal digestive enzymes, it was sometimes reduced in size and enclosed in the gut wall itself (agnaths) or dispersed as tiny bits of tissue in the mesentary supporting the gut (actinopterygians).
The excretory system
The excretory system is unique in its nephrons, which filter the blood in the glomeruli and remove a variety of wastes from the body through selective secretion and reabsorption. In the shark or the coelacanth Latimeria, urea is used to raise the osmotic pressure of the blood to that of the marine habitat, thus saving these organisms considerable metabolic energy. The large intestine (sometimes centred in a rectal gland) acts as an auxiliary excretory organ, as do also the gills of fishes or the sweat glands of mammals.
Respiration and gas exchange
Respiration, like excretion, involves specialized body structures, such as lungs or gills, but also can involve other areas, such as the skin itself. Respiration involves exchange of gases both between the body of the organism and the environment and between the blood system and the body tissues. It also involves cellular respiration where oxygen is used and carbon dioxide is produced. There is nothing characteristic of the vertebrate in this functional area; even the hemoglobin of the blood is suggested in the respiratory pigments of other animals.
The circulatory system
The circulatory system of vertebrates is closed in that fluids course through vessels, but there is free movement of cells in and out of blood. Some leukocyte (white blood cell) movement out of the capillaries and fluid leakage are observed in all tissues. Blood tissues are distinctive in the range of specialized cells, although these vary in detail among animals. The immune function of the blood is best developed in the vertebrate.
The endocrine system
The endocrine system is characterized by its separate organs. The occurrence of a pituitary or a thyroid gland is suggestive of the evolutionary change and specialization that took place within this group. The relatively unspecialized nature of some parts of this system is seen in certain scattered cells in the gut wall or even the clumps of islet cells of the pancreas.