Horst L. Störmer

German-American physicist
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: Horst Ludwig Störmer
Quick Facts
In full:
Horst Ludwig Störmer
Born:
April 6, 1949, Frankfurt am Main, West Germany [now Germany]
Also Known As:
Horst Ludwig Störmer
Awards And Honors:
Nobel Prize (1998)
Subjects Of Study:
Hall effect
quantum

Horst L. Störmer (born April 6, 1949, Frankfurt am Main, West Germany [now Germany]) is a German-born American physicist who, with Daniel C. Tsui and Robert B. Laughlin, was coawarded the 1998 Nobel Prize in Physics for the discovery and explanation of the fractional quantum Hall effect.

Störmer grew up in West Germany (now Germany). He graduated from Goethe University Frankfurt in 1970 and earned a Ph.D. in physics at the University of Stuttgart in 1977. Moving to the United States, he joined the research staff of Bell Laboratories (Murray Hill, New Jersey) in 1978. There he and his coworker Tsui made their discovery in 1982. Störmer was head of the Physical Research Laboratory at Bell Labs from 1992 to 1998, when he became a professor at Columbia University in New York City; he retired as professor emeritus in 2011.

The research of Störmer and Tsui was based on the Hall effect, which denotes the voltage that develops between the edges of a thin current-carrying ribbon placed flat between the poles of a strong magnet. This effect had long been familiar to science, but in 1980 the German physicist Klaus von Klitzing discovered that at extremely low temperatures, though the strength of an applied magnetic field is increased smoothly and continuously, the corresponding change in the voltage of the deflected current (the Hall resistance) occurs in discrete jumps or steps, thereby exhibiting quantum properties. Störmer and Tsui extended Klitzing’s work, observing the Hall effect in semiconductors at temperatures close to absolute zero and under extremely powerful magnetic fields. In 1982 they observed that under these conditions, the Hall effect varies not only stepwise but in fractional increments, implying that the charge carriers in the current carry exact fractions of an electron’s charge. In 1983 the American physicist Laughlin explained this puzzling phenomenon by proposing that the electrons in the powerful magnetic fields generated by Störmer and Tsui form a quantum fluid made up of quasi-particles that have fractional electric charges.

Italian-born physicist Dr. Enrico Fermi draws a diagram at a blackboard with mathematical equations. circa 1950.
Britannica Quiz
Physics and Natural Law

Earlier in 1998, Stormer was awarded jointly with Laughlin and Tsui the Benjamin Franklin Medal in Physics for the discovery of the fractional quantum hall effect.

The Editors of Encyclopaedia BritannicaThis article was most recently revised and updated by Encyclopaedia Britannica.