Nicéphore Niépce

French inventor
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites
Britannica Websites
Articles from Britannica Encyclopedias for elementary and high school students.
Also known as: Joseph-Nicéphore Niépce
Quick Facts
In full:
Joseph-Nicéphore Niépce
Born:
March 7, 1765, Chalon-sur-Saône, France
Died:
July 5, 1833, Chalon-sur-Saône
Also Known As:
Joseph-Nicéphore Niépce
Inventions:
heliography
Pyréolophore
Subjects Of Study:
piston engine

Nicéphore Niépce (born March 7, 1765, Chalon-sur-Saône, France—died July 5, 1833, Chalon-sur-Saône) was a French inventor who was the first to make a permanent photographic image.

The son of a wealthy family suspected of royalist sympathies, Niépce fled the French Revolution but returned to serve in the French army under Napoleon Bonaparte. Dismissed because of ill health, he settled near his native town of Chalon-sur-Saône, where he remained engaged in research for the rest of his life.

In 1807 Niépce and his brother Claude invented an internal-combustion engine, which they called the Pyréolophore, explaining that the word was derived from a combination of the Greek words for “fire,” “wind,” and “I produce.” Working on a piston-and-cylinder system similar to 20th-century gasoline-powered engines, the Pyréolophore initially used lycopodium powder for fuel, and Niépce claimed to have used it to power a boat.

Armed Forces Radio Services broadcaster Jack Brown interviews Humphrey Bogart and Lauren Bacall for broadcast to troops overseas during World War II.
Britannica Quiz
Communications Firsts Quiz

When lithography became a fashionable hobby in France in 1813, Niépce began to experiment with the then-novel printing technique. Unskilled in drawing, and unable to obtain proper lithographic stone locally, he sought a way to provide images automatically. He coated pewter with various light-sensitive substances in an effort to copy superimposed engravings in sunlight. From this he progressed in April 1816 to attempts at photography, which he called heliography (sundrawing), with a camera. He recorded a view from his workroom window on paper sensitized with silver chloride but was only partially able to fix the image. Next he tried various types of supports for the light-sensitive material bitumen of Judea, a kind of asphalt, which hardens on exposure to light. Using this material he succeeded in 1822 in obtaining a photographic copy of an engraving superimposed on glass. In 1826/27, using a camera, he made a view from his workroom on a pewter plate, this being the first permanently fixed image from nature. Metal had the advantage of being unbreakable and was better suited to the subsequent etching process to produce a printing plate, which was Niépce’s final aim. In 1826, he had produced another heliograph, a reproduction of an engraved portrait, which was etched by the Parisian engraver Augustin-François Lemaître, who pulled two prints. Thus Niépce not only solved the problem of reproducing nature by light, but he invented the first photomechanical reproduction process. While on a visit to England in 1827, Niépce addressed a memorandum on his invention to the Royal Society, London, but his insistence on keeping the method secret prevented the matter from being investigated.

Unable to reduce the very long exposure times by either chemical or optical means, Niépce in 1829 finally gave in to the repeated overtures of Louis-Jacques-Mandé Daguerre, a Parisian painter, for a partnership to perfect and exploit heliography. Niépce died without seeing any further advance, but, building on his knowledge, and working with his materials, Daguerre eventually succeeded in greatly reducing the exposure time through his discovery of a chemical process for development of (making visible) the latent (invisible) image formed upon brief exposure. These experiments eventually led him to invent the daguerreotype, the first successful form of photography.

The Editors of Encyclopaedia BritannicaThis article was most recently revised and updated by Encyclopaedia Britannica.