Quick Facts
Born:
1976, Valencia, Spain (age 49)

Pablo Jarillo-Herrero (born 1976, Valencia, Spain) is a Spanish physicist known for his work in the field of twistronics, the study of how the properties of layers of two-dimensional materials change when one layer is rotated with respect to the other.

Jarillo-Herrero received a bachelor’s degree in physics from the University of Valencia in Spain in 1999. He earned a master’s degree from the University of California, San Diego, in 2001, and a doctorate from the Delft University of Technology in the Netherlands in 2005. He was a postdoctoral fellow at Delft from 2005 to 2006 and a research fellow at Columbia University from 2006 to 2008. In 2008 he joined the faculty at the Massachusetts Institute of Technology.

Graphene is crystalline carbon in the form of a two-dimensional layer; bilayer graphene is two such layers, one on top of the other. In 2011 Canadian-American physicist Allan MacDonald and Israeli physicist Rafi Bistritzer published results of their models of bilayer graphene. They predicted that, if one layer is rotated with respect to the other by a “magic angle” of about 1.05 degrees, the velocity of electrons through graphene would go to zero, and the graphene would become an insulator, when it is normally an excellent conductor.

In 2018 Jarillo-Herrero and collaborators performed experiments that verified MacDonald and Bistritzer’s predictions. They found that, at a magic angle of about 1.1 degrees, by applying a slight voltage the bilayer graphene would change from an insulator to a superconductor (that is, a material with zero electrical resistance). Such a change also occurs in high-temperature superconductors called cuprates. Because bilayer graphene is easier to study and produce than cuprates are, physicists surmise that experiments with bilayer graphene will lead to better understanding of superconductivity.

“[Sandwiching bilayer graphene between boron nitride] could pave the way for a new generation of twisted, graphene-based superconducting electronics.” —Pablo Jarillo-Herrero

In 2023 Jarillo-Herrero and his collaborators published work about sandwiching magic-angle bilayer graphene between two layers of boron nitride with the top boron nitride layer aligned to the top graphene layer and the bottom boron nitride layer rotated with respect to the top layer by 30 degrees. They found that one could not only change the bilayer graphene between an insulator, a conductor, and a superconductor by applying specific voltages but also that the changes persisted after the voltage was turned off. Bilayer graphene did not require a constant voltage but only a short pulse to become a superconductor and remain that way.

Jarillo-Herrero was awarded the Buckley Prize (2020), the Wolf Prize (2020, with MacDonald and Bistritzer), and the Lise Meitner Medal by the Royal Swedish Academy of Sciences (2021). He is a member of the National Academy of Sciences.

Are you a student?
Get a special academic rate on Britannica Premium.
Erik Gregersen
Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.

graphene, a two-dimensional form of crystalline carbon, either a single layer of carbon atoms forming a honeycomb (hexagonal) lattice or several coupled layers of this honeycomb structure. The word graphene, when used without specifying the form (e.g., bilayer graphene, multilayer graphene), usually refers to single-layer graphene. Graphene is a parent form of all graphitic structures of carbon: graphite, which is a three-dimensional crystal consisting of relatively weakly coupled graphene layers; nanotubes, which may be represented as scrolls of graphene; and buckyballs, spherical molecules made from graphene with some hexagonal rings replaced by pentagonal rings.

First studies of graphene

The theoretical study of graphene was started in 1947 by physicist Philip R. Wallace as a first step to understanding the electronic structure of graphite. The term graphene was introduced by chemists Hanns-Peter Boehm, Ralph Setton, and Eberhard Stumpp in 1986 as a combination of the word graphite, referring to carbon in its ordered crystalline form, and the suffix -ene, referring to polycyclic aromatic hydrocarbons in which the carbon atoms form hexagonal, or six-sided, ring structures.

In 2004 University of Manchester physicists Konstantin Novoselov and Andre Geim and colleagues isolated single-layer graphene using an extremely simple method of exfoliation from graphite. Their “scotch-tape method” used adhesive tape to remove the top layers from a sample of graphite and then apply the layers to a substrate material. When the tape was removed, some graphene remained on the substrate in single-layer form. In fact, derivation of graphene is not a difficult task by itself; each time someone draws with a pencil on paper, the pencil trace contains a small fraction of single-layer and multilayer graphene. The achievement of the Manchester group was not only to isolate graphene flakes but also to study their physical properties. In particular, they demonstrated that electrons in graphene have a very high mobility, which means that graphene could possibly be used in electronic applications. In 2010 Geim and Novoselov were awarded the Nobel Prize for Physics for their work.

In these first experiments, the substrate for graphene was silicon naturally covered by a thin transparent layer of silicon dioxide. It turned out that single-layer graphene created an optical contrast with the silicon dioxide that was strong enough to make the graphene visible under a standard optical microscope. This visibility has two causes. First, electrons in graphene interact very strongly with photons in the visible light frequencies, absorbing about 2.3 percent of the light’s intensity per atomic layer. Second, the optical contrast is strongly enhanced by interference phenomena in the silicon dioxide layer; these are the same phenomena that create rainbow colours in thin films such as soap film or oil on water.

The electronic structure of graphene

The basic electronic structure of graphene and, as a consequence, its electric properties are very peculiar. By applying a gate voltage or using chemical doping by adsorbed atoms and molecules, one can create either electron or hole (a region where an electron is missing that acts as a positive electric charge) conductivity in graphene that is similar to the conductivity created in semiconductors. However, in most semiconductors there are certain energy levels where electrons and holes do not have allowed quantum states, and, because electrons and holes cannot occupy these levels, for certain gate voltages and types of chemical doping, the semiconductor acts as an insulator. Graphene, on the other hand, does not have an insulator state, and conductivity remains finite at any doping, including zero doping. Existence of this minimal conductivity for the undoped case is a striking difference between graphene and conventional semiconductors. Electron and hole states in graphene relevant for charge-carrier transport are similar to the states of ultra-relativistic quantum particles—that is, quantum particles moving at the speed of light (the ultimate velocity in nature, according to the theory of relativity).

The honeycomb lattice of graphene actually consists of two sublattices, designated A and B, such that each atom in sublattice A is surrounded by three atoms of sublattice B and vice versa. This simple geometrical arrangement leads to the appearance that the electrons and holes in graphene have an unusual degree of internal freedom, usually called pseudospin. In fact, making the analogy more complete, pseudospin mimics the spin, or internal angular momentum, of subatomic particles. Within this analogy, electrons and holes in graphene play the same role as particles and antiparticles (e.g., electrons and positrons) in quantum electrodynamics. At the same time, however, the velocity of the electrons and holes is only about 1/300 the speed of light. This makes graphene a test bed for high-energy physics: some quantum relativistic effects that are hardly reachable in experiments with subatomic particles using particle accelerators have clear analogs in the physics of electrons and holes in graphene, which can be measured and studied more easily because of their lower velocity. An example is the Klein paradox, in which ultra-relativistic quantum particles, contrary to intuition, penetrate easily through very high and broad energy barriers. Thus, graphene provides a bridge between materials science and some areas of fundamental physics, such as relativistic quantum mechanics.

Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.