print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://www.britannica.com/plant/tree
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Key People:
Ivan Vladimirovich Michurin

News

Nearly 40 percent of world’s trees face extinction, new assessment finds Oct. 30, 2024, 6:22 AM ET (The Hill)
Alarm call as world's trees slide towards extinction Oct. 29, 2024, 2:13 AM ET (BBC)

Most tree species have bark that is unique in structure and appearance; in fact, many trees can be identified by the characteristics of their bark alone. In some species the bark looks similar throughout the life of the plant, while in others there are dramatic changes with age.

The term tree bark refers to the tissues outside the vascular cambium. The inner bark is composed of secondary phloem, which in general remains functional in transport for only one year. A second type of lateral (nonapical) meristem, called the cork cambium, develops in some of the cells of the older phloem and forms cork cells. The cork cells push the old secondary phloem cells toward the outer margins of the stem, where they are crushed, are torn, and eventually slough off. All tissues outside the cork cambium constitute the outer bark, including the nonfunctional phloem and cork cells. The cork may develop during the first year in many trees and form exfoliating bark, while in others, such as beeches, dogwoods, and maples, the bark may not exfoliate for several years. In cases of delayed formation, the outer covering of the stem, the periderm or the epidermis, must enlarge and grow to keep pace with the increase in stem diameter.

Bark minimizes water loss from the stems, deters insect and fungal attack, and can be a very effective protector against fire damage, as is demonstrated by the high fire resistance of redwood and giant sequoia trees, which have a massive bark.

The cork cambium provides an effective barrier against many kinds of invaders; however, in being so resilient, it also cuts off the outer secondary phloem and tissues from the rest of the wood, effectively killing it. Thus, the outer bark is made up entirely of dead tissue.

The pattern of cork development is the main determinant of bark appearance. In some barks the cork cambium and cork tissues are laid down in a discontinuous and overlapping manner, resulting in a scaly type of bark (pines and pear trees); in other barks the pattern is continuous and in sheets (paper birch and cherry). Barks show various patterns intermediate between these extremes.

The cork cambium primarily produces a single cell type, the cork cells; however, the walls may be thick or thin. Birch bark peels because it has alternating layers of thick- and thin-walled cork cells. Birch bark also has numerous pores on the bark, called lenticels, and these are also associated with cork formation because they provide openings for gas exchange. In most cases, they form at the location of stomates.

Bark varies from the smooth, copper-coloured covering of the gumbo-limbo (Bursera simaruba) to the thick, soft, spongy bark of the punk, or cajeput, tree (Melaleuca leucadendron). Other types of bark include the commercial cork of the cork oak (Quercus suber) and the rugged, fissured outer coat of many other oaks; the flaking, patchy-coloured barks of sycamores (Platanus) and the lacebark pine (Pinus bungeana); and the rough shinglelike outer covering of shagbark hickory (Carya ovata).

Flower buds

Tree buds may be vegetative or reproductive. Vegetative buds continue to produce height growth units unless or until they are induced to form flowers. When a shoot apical meristem is induced to form a reproductive bud, its existence terminates when the pollen or seeds are shed. Exactly what induces the formation of a reproductive bud varies with species, but changes in the number of daylight hours are common signals in many plants. Changes in the levels of hormones and carbohydrates are among the factors that signal the physiological factors that directly result in flowering.

Tree roots

Roots provide anchorage and absorption of sufficient water and nutrients to support the remainder of the plant. Trees have a greater variety of roots than do other vascular plants. The feeder, or fine, roots are similar to those of herbaceous vascular plants until, as they mature, they begin to undergo secondary growth. Stress roots form in some species when a plant suffers from water or nutrient stress. Adventitious roots may form in external tissue as well as on existing roots. Roots may grow down, sideways, or even up along tree trunks. These directions are determined by a transducing system that converts physical signals into physiological signals that control the morphological and anatomical development of the roots. The main locus of gravity perception is thought to reside in the root cap. Roots of several forms may be present in a single individual. For example, mangroves can have feeder roots for absorption, stilt roots for support, and pneumatophores for aeration.

Buttress roots are aerial extensions of lateral surface roots and form only in certain species. Buttress roots stabilize the tree, especially in shallow saturated soils, thereby resisting toppling. They are common in certain tropical trees of wet lowland environments but, with few exceptions, such as bald cypress swamps, are largely absent in temperate trees. A diverse number of tree families and species develop buttress roots, suggesting that they are induced by the environment and are of some adaptive advantage.

Buttress roots are characterized by thin (about 8–10 cm [3–4 inches] thick) planklike extensions from the tree trunk. They may be as much as 3 metres (10 feet) tall and extend 3 metres laterally from the base of the tree. The radial diameter of the individual vessel elements and the amount of vessel area per unit cross-sectional area of xylem are reduced in buttress roots. The amount of cell-wall area is correspondingly increased, although the individual cell walls are somewhat thinner.

Buttresses tend to be more prevalent on the windward side of the tree and thus function in tension resistance. Height growth is diminished whenever buttressing is developed, suggesting that the carbon resources of the tree are reallocated as a response to environmental conditions. There may be secondary effects of buttress roots, such as retardation of water flow around the tree base, thereby preventing nutrients and nutrient-rich litter from washing away. It is unlikely that buttresses provide aeration, as they have different anatomy from pneumatophores and as some species have both buttresses and pneumatophores—e.g., Pterocarpus officinalis and bald cypress, Taxodium distichum.

Pneumatophores are specialized root structures that grow out from the water surface and facilitate the aeration necessary for root respiration in hydrophytic trees such as many mangrove species (e.g., Avicennia germinans and Laguncularia raecemosa), bald cypresses, and cotton (tupelo) gum (Nyssa aquatica). Red mangroves (Rhizophora mangle) have stilt roots that function in both support and aeration.

Hydrophytic trees have various modifications that facilitate their survival and growth in the aqueous environment. Some species produce a high frequency of lenticels on the bark that facilitate gas exchange. Others exhibit greater permeation of oxygen through the bark and into the cambium at lower oxygen concentrations. Hydrophytic trees often have more intercellular spaces in their tissues to promote aeration of their roots. Some trees produce adventitious water roots near the waterline after flooding conditions develop. The new roots produced have altered structure (surface sealing layers, more loosely packed cells in cortex, and poorly developed endodermis). Such roots are said to show acclimation. Hydrophytic species are often adapted to anaerobic metabolism and can endure the often toxic by-products of this process (e.g., ethyl alcohol and lactic acid). Some trees in the Amazon survive several months of total inundation each year.

Root hairs form some distance back from the root tip and mature at about the point where the first primary xylem cells mature. A type of transfer cell and supplied with many protoplasmic connections to the adjacent root cells, root hairs increase the absorbing area of the roots at minimal carbon cost and can penetrate finer pores in the soil. Phosphorus uptake is directly correlated with length and frequency of root hairs. The roots of some species form associations with certain fungi called mycorrhizae. These fungal root associations also facilitate phosphorus uptake. Root hairs are less abundant on southern pines than on associated hardwoods in the southeastern United States, and this is thought to give the hardwoods a competitive edge in some cases.