industrial ceramics, Ceramics are broadly defined as inorganic, nonmetallic materials that exhibit such useful properties as high strength and hardness, high melting temperatures, chemical inertness, and low thermal and electrical conductivity but that also display brittleness and sensitivity to flaws. As practical materials, they have a history almost as old as the human race. Traditional ceramic products, made from common, naturally occurring minerals such as clay and sand, have long been the object of the potter, the brickmaker, and the glazier. Modern advanced ceramics, on the other hand, are often produced under exacting conditions in the laboratory and call into play the skills of the chemist, the physicist, and the engineer. Containing a variety of ingredients and manipulated by a variety of processing techniques, ceramics are made into a wide range of industrial products, from common floor tile to nuclear fuel pellets. Yet all these disparate products owe their utility to a set of properties that are universally recognized as ceramic-like, and these properties in turn owe their existence to chemical bonds and atomic structures that are peculiar to the material. The composition, structure, and properties of industrial ceramics, their processing into both traditional and advanced materials, and the products made from those materials are the subject of many articles on particular traditional or advanced ceramic products, such as whitewares, abrasives, conductive ceramics, and bioceramics. For a more comprehensive understanding of the subject, however, the reader is advised to begin with the central article, on the composition, structure, and properties of ceramic materials.