cobalt

chemical element
Also known as: Co

cobalt (Co), chemical element, ferromagnetic metal of Group 9 (VIIIb) of the periodic table, used especially for heat-resistant and magnetic alloys.

The metal was isolated (c. 1735) by Swedish chemist Georg Brandt, though cobalt compounds had been used for centuries to impart a blue colour to glazes and ceramics. Cobalt has been detected in Egyptian statuettes and Persian necklace beads of the 3rd millennium bce, in glass found in the Pompeii ruins, and in China as early as the Tang dynasty (618–907 ce) and later in the blue porcelain of the Ming dynasty (1368–1644). The name kobold was first applied (16th century) to ores thought to contain copper but eventually found to be poisonous arsenic-bearing cobalt ores. Brandt finally determined (1742) that the blue colour of those ores was due to the presence of cobalt.

Element Properties
atomic number27
atomic weight58.933194
melting point1,495 °C (2,723 °F)
boiling point2,870 °C (5,198 °F)
density 8.9 gram/cm3 at 20 °C (68 °F)
oxidation states+2, +3
electron configuration[Ar]3d74s2

Occurrence, properties, and uses

Cobalt, though widely dispersed, makes up only 0.001 percent of Earth’s crust. It is found in small quantities in terrestrial and meteoritic native nickel-iron, in the Sun and stellar atmospheres, and in combination with other elements in natural waters, in ferromanganese crusts deep in the oceans, in soils, in plants and animals, and in minerals such as cobaltite, linnaeite, skutterudite, smaltite, heterogenite, and erythrite. In animals, cobalt is a trace element essential in the nutrition of ruminants (cattle, sheep) and in the maturation of human red blood cells in the form of vitamin B12, the only vitamin known to contain such a heavy element.

Concept artwork on the periodic table of elements.
Britannica Quiz
118 Names and Symbols of the Periodic Table Quiz

With few exceptions, cobalt ore is not usually mined for the cobalt content. Rather, it is often recovered as a by-product from the mining of ores of iron, nickel, copper, silver, manganese, zinc, and arsenic, which contain traces of cobalt. Complex processing is required to concentrate and extract cobalt from these ores. By the second decade of the 21st century, the Democratic Republic of the Congo (DRC), China, Canada, and Russia were the world’s leading producers of mined cobalt. The largest producer of refined cobalt, however, was China, which imported vast additional amounts of cobalt mineral resources from the DRC. (For additional information on the mining, refining, and recovery of cobalt, see cobalt processing.)

Polished cobalt is silver-white with a faint bluish tinge. Two allotropes are known: the hexagonal close-packed structure, stable below 417 °C (783 °F), and the face-centred cubic, stable at high temperatures. It is ferromagnetic up to 1,121 °C (2,050 °F, the highest known Curie point of any metal or alloy) and may find application where magnetic properties are needed at elevated temperatures.

Cobalt is one of the three metals that are ferromagnetic at room temperature. It dissolves slowly in dilute mineral acids, does not combine directly with either hydrogen or nitrogen, but will combine, on heating, with carbon, phosphorus, or sulfur. Cobalt is also attacked by oxygen and by water vapour at elevated temperatures, with the result that cobaltous oxide, CoO (with the metal in the +2 state), is produced.

Natural cobalt is all stable isotope cobalt-59, from which the longest-lived artificial radioactive isotope cobalt-60 (5.3-year half-life) is produced by neutron irradiation in a nuclear reactor. Gamma radiation from cobalt-60 has been used in place of X-rays or alpha rays from radium in the inspection of industrial materials to reveal internal structure, flaws, or foreign objects. It has also been used in cancer therapy, in sterilization studies, and in biology and industry as a radioactive tracer.

Are you a student?
Get a special academic rate on Britannica Premium.

Most of the cobalt produced is used for special alloys. A relatively large percentage of the world’s production goes into magnetic alloys such as the Alnicos for permanent magnets. Sizable quantities are utilized for alloys that retain their properties at high temperatures and superalloys that are used near their melting points (where steels would become too soft). Cobalt is also employed for hard-facing alloys, tool steels, low-expansion alloys (for glass-to-metal seals), and constant-modulus (elastic) alloys (for precision hairsprings). Cobalt is the most satisfactory matrix for cemented carbides.

Finely divided cobalt ignites spontaneously. Larger pieces are relatively inert in air, but above 300 °C (570 °F) extensive oxidation occurs.

Compounds

In its compounds cobalt nearly always exhibits a +2 or +3 oxidation state, although states of +4, +1, 0, and −1 are known. The compounds in which cobalt exhibits the +2 oxidation state (Co2+, the ion being stable in water) are called cobaltous, while those in which cobalt exhibits the +3 oxidation state (Co3+) are called cobaltic.

Both Co2+ and Co3+ form numerous coordination compounds, or complexes. Co3+ forms more known complex ions than any other metal except platinum. The coordination number of the complexes is generally six.

Cobalt forms two well-defined binary compounds with oxygen: cobaltous oxide, CoO, and tricobalt textroxide, or cobalto-cobaltic oxide, Co3O4. The latter contains cobalt in both +2 and +3 oxidation states and constitutes up to 40 percent of the commercial cobalt oxide used in the manufacture of ceramics, glass, and enamel and in the preparation of catalysts and cobalt metal powder.

One of the more important salts of cobalt is the sulfate CoSO4, which is employed in electroplating, in preparing drying agents, and for pasture top-dressing in agriculture. Other cobaltous salts have significant applications in the production of catalysts, driers, cobalt metal powders, and other salts. Cobaltous chloride (CoCl2∙6H2O in commercial form), a pink solid that changes to blue as it dehydrates, is utilized in catalyst preparation and as an indicator of humidity. Cobaltous phosphate, Co3(PO4)2∙8H2O, is used in painting porcelain and colouring glass.

The Editors of Encyclopaedia Britannica This article was most recently revised and updated by Amy Tikkanen.
Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.
Also called:
electric automobile

electric car, battery-powered motor vehicle, originating in the late 1880s and used for private passenger, truck, and bus transportation.

Through the early period of the automotive industry until about 1920, electric cars were competitive with petroleum-fueled cars, particularly as luxury cars for urban use and as trucks for deliveries at closely related points, for which the relatively low speed and limited range, until battery recharge, were not detrimental. Electrics, many of which were steered with a tiller rather than a wheel, were especially popular for their quietness and low maintenance costs. Ironically, the death knell of the electric car was first tolled by the Kettering electrical self-starter, first used in 1912 Cadillacs and then increasingly in other gasoline-engine cars. Mass production, led by Henry Ford, also reduced the cost of nonelectrics. Electric trucks and buses survived into the 1920s, later than passenger cars, especially in Europe.

Electric car prototypes reappeared in the 1960s, when major U.S. manufacturers, faced with the ultimate exhaustion of petroleum-based fuels and with immediate rising fuel costs from the domination of Arab petroleum producers, once again began to develop electrics. Both speed and range were increased, and newly developed fuel cells offered an alternative to batteries, but by the mid-1980s electric cars had not yet become part of the automotive industry’s output. Most industrial in-plant carrying and lifting vehicles, however, were electrically powered.

John F. Fitzgerald Expressway
More From Britannica
automobile: Early electric automobiles

Interest in electric cars rose in the late 1990s, partly because of concerns about climate change. Toyota introduced the Prius, a hybrid capable of running both on battery power and on gasoline, first in Japan in 1997 and then worldwide in 2000. The popularity of the Prius led to the development of other hybrid vehicles, such as the Honda Insight (1999) and the Chevrolet Volt (2011). In 2008 Tesla released its first car, the completely electric luxury sports car Roadster, which could travel 394 km (245 miles) on a single charge. The success of the Roadster and other Tesla models led to other car companies designing their own all-electric vehicles, such as the Nissan LEAF (2010) and the Renault ZOE (2012). Many of the world’s major car companies planned either to make mostly or only electric or hybrid cars or to stop developing new car models with internal-combustion engines by the 2030s.

The Editors of Encyclopaedia BritannicaThis article was most recently revised and updated by Erik Gregersen.
Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.