combinatorics

mathematics
print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: combinatorial mathematics

combinatorics, the field of mathematics concerned with problems of selection, arrangement, and operation within a finite or discrete system. Included is the closely related area of combinatorial geometry.

One of the basic problems of combinatorics is to determine the number of possible configurations (e.g., graphs, designs, arrays) of a given type. Even when the rules specifying the configuration are relatively simple, enumeration may sometimes present formidable difficulties. The mathematician may have to be content with finding an approximate answer or at least a good lower and upper bound.

In mathematics, generally, an entity is said to “exist” if a mathematical example satisfies the abstract properties that define the entity. In this sense it may not be apparent that even a single configuration with certain specified properties exists. This situation gives rise to problems of existence and construction. There is again an important class of theorems that guarantee the existence of certain choices under appropriate hypotheses. Besides their intrinsic interest, these theorems may be used as existence theorems in various combinatorial problems.

Finally, there are problems of optimization. As an example, a function f, the economic function, assigns the numerical value f(x) to any configuration x with certain specified properties. In this case the problem is to choose a configuration x0 that minimizes f(x) or makes it ε = minimal—that is, for any number ε > 0, f(x0) f(x) + ε, for all configurations x, with the specified properties.

History

Early developments

Certain types of combinatorial problems have attracted the attention of mathematicians since early times. Magic squares, for example, which are square arrays of numbers with the property that the rows, columns, and diagonals add up to the same number, occur in the I Ching, a Chinese book dating back to the 12th century bc. The binomial coefficients, or integer coefficients in the expansion of (a + b)n, were known to the 12th-century Indian mathematician Bhāskara, who in his Līlāvatī (“The Graceful”), dedicated to a beautiful woman, gave the rules for calculating them together with illustrative examples. “Pascal’s triangle,” a triangular array of binomial coefficients, had been taught by the 13th-century Persian philosopher Naṣīr ad-Dīn aḷ-Ṭūsī.

Equations written on blackboard
Britannica Quiz
Numbers and Mathematics

In the West, combinatorics may be considered to begin in the 17th century with Blaise Pascal and Pierre de Fermat, both of France, who discovered many classical combinatorial results in connection with the development of the theory of probability. The term combinatorial was first used in the modern mathematical sense by the German philosopher and mathematician Gottfried Wilhelm Leibniz in his Dissertatio de Arte Combinatoria (“Dissertation Concerning the Combinational Arts”). He foresaw the applications of this new discipline to the whole range of the sciences. The Swiss mathematician Leonhard Euler was finally responsible for the development of a school of authentic combinatorial mathematics beginning in the 18th century. He became the father of graph theory when he settled the Königsberg bridge problem, and his famous conjecture on Latin squares was not resolved until 1959.

In England, Arthur Cayley, near the end of the 19th century, made important contributions to enumerative graph theory, and James Joseph Sylvester discovered many combinatorial results. The British mathematician George Boole at about the same time used combinatorial methods in connection with the development of symbolic logic, and the combinatorial ideas and methods of Henri Poincaré, which developed in the early part of the 20th century in connection with the problem of n bodies, have led to the discipline of topology, which occupies the centre of the stage of mathematics. Many combinatorial problems were posed during the 19th century as purely recreational problems and are identified by such names as “the problem of eight queens” and “the Kirkman school girl problem.” On the other hand, the study of triple systems begun by Thomas P. Kirkman in 1847 and pursued by Jakob Steiner, a Swiss-born German mathematician, in the 1850s was the beginning of the theory of design. Among the earliest books devoted exclusively to combinatorics are the German mathematician Eugen Netto’s Lehrbuch der Combinatorik (1901; “Textbook of Combinatorics”) and the British mathematician Percy Alexander MacMahon’s Combinatory Analysis (1915–16), which provide a view of combinatorial theory as it existed before 1920.

Are you a student?
Get a special academic rate on Britannica Premium.

Combinatorics during the 20th century

Many factors have contributed to the quickening pace of development of combinatorial theory since 1920. One of these was the development of the statistical theory of the design of experiments by the English statisticians Ronald Fisher and Frank Yates, which has given rise to many problems of combinatorial interest; the methods initially developed to solve them have found applications in such fields as coding theory. Information theory, which arose around midcentury, has also become a rich source of combinatorial problems of a quite new type.

Another source of the revival of interest in combinatorics is graph theory, the importance of which lies in the fact that graphs can serve as abstract models for many different kinds of schemes of relations among sets of objects. Its applications extend to operations research, chemistry, statistical mechanics, theoretical physics, and socioeconomic problems. The theory of transportation networks can be regarded as a chapter of the theory of directed graphs. One of the most challenging theoretical problems, the four-colour problem (see below) belongs to the domain of graph theory. It has also applications to such other branches of mathematics as group theory.

The development of computer technology in the second half of the 20th century is a main cause of the interest in finite mathematics in general and combinatorial theory in particular. Combinatorial problems arise not only in numerical analysis but also in the design of computer systems and in the application of computers to such problems as those of information storage and retrieval.

Statistical mechanics is one of the oldest and most productive sources of combinatorial problems. Much important combinatorial work has been done by applied mathematicians and physicists since the mid-20th century—for example, the work on Ising models (see below The Ising problem).

In pure mathematics, combinatorial methods have been used with advantage in such diverse fields as probability, algebra (finite groups and fields, matrix and lattice theory), number theory (difference sets), set theory (Sperner’s theorem), and mathematical logic (Ramsey’s theorem).

In contrast to the wide range of combinatorial problems and the multiplicity of methods that have been devised to deal with them stands the lack of a central unifying theory. Unifying principles and cross connections, however, have begun to appear in various areas of combinatorial theory. The search for an underlying pattern that may indicate in some way how the diverse parts of combinatorics are interwoven is a challenge that faces mathematicians in the last quarter of the 20th century.