elimination reaction, any of a class of organic chemical reactions in which a pair of atoms or groups of atoms are removed from a molecule, usually through the action of acids, bases, or metals and, in some cases, by heating to a high temperature. It is the principal process by which organic compounds containing only single carbon-carbon bonds (saturated compounds) are transformed to compounds containing double or triple carbon-carbon bonds (unsaturated compounds).

Elimination reactions are commonly known by the kind of atoms or groups of atoms leaving the molecule. The removal of a hydrogen atom and a halogen atom, for example, is known as dehydrohalogenation; when both leaving atoms are halogens, the reaction is known as dehalogenation. Similarly, the elimination of a water molecule, usually from an alcohol, is known as dehydration; when both leaving atoms are hydrogen atoms, the reaction is known as dehydrogenation. Elimination reactions are also classified as E1 or E2, depending on the reaction kinetics. In an E1 reaction, the reaction rate is proportional to the concentration of the substance to be transformed; in an E2 reaction, the reaction rate is proportional to the concentrations of both the substrate and the eliminating agent.

substitution reaction, any of a class of chemical reactions in which an atom, ion, or group of atoms or ions in a molecule is replaced by another atom, ion, or group. An example is the reaction in which the chlorine atom in the chloromethane molecule is displaced by the hydroxide ion, forming methanol:

CH3Cl + OH→ CH3OH + Cl-

If the chlorine atom is displaced by other groups—such as the cyanide ion (CN), the ethoxide ion (C2H5O), or the hydrosulfide ion (HS-)—chloromethane is transformed, respectively, to acetonitrile (CH3CN), methyl ethyl ether (CH3OC2H5), or methanethiol (CH3SH). Thus an organic compound such as an alkyl halide can give rise to numerous types of organic compounds by substitution reactions with suitable reagents.

Double exposure of science laboratory test tubes with bokeh and chemical reaction
Britannica Quiz
Types of Chemical Reactions

Substitution reactions are divided into three general classes, depending on the type of atom or group that acts as the substituent. In one, the substituent is electron-rich and provides the electron pair for bonding with the substrate (the molecule being transformed). This type of reaction is known as nucleophilic substitution. Examples of nucleophilic reagents are the halogen anions (Cl-, Br-, I-), ammonia (NH3), the hydroxyl group, the alkoxy group (RO), the cyano group, and the hydrosulfide group. In the second type of substitution reaction, the substituent is deficient in electrons, and the electron pair for bonding with the substrate comes from the substrate itself. This reaction is known as electrophilic substitution. Examples of electrophilic species are the hydronium ion (H3O+), the hydrogen halides (HCl, HBr, HI), the nitronium ion (NO2+), and sulfur trioxide (SO3). Substrates of nucleophiles are commonly alkyl halides, while aromatic compounds are among the most important substrates of electrophiles. The third class of substitutions involves the reactions of free radicals with suitable substrates. Examples of radical reagents are the halogen radicals and oxygen-containing species derived from peroxy compounds.