print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://www.britannica.com/science/light
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: optical spectrum, visible radiation, visible spectrum

News

Bob Uecker, Light-Hitting Catcher Turned Comic Actor and Broadcaster, Dies at 90 Jan. 17, 2025, 12:03 AM ET (The Hollywood Reporter)
Scientists observe 'negative time' in quantum experiments Dec. 21, 2024, 4:36 AM ET (Voice of America English News)

The atoms on the surface of a heated filament, which generate light, act independently of one another. Each of their emissions can be approximately modeled as a short “wave train” lasting from about 10−9 to 10−8 second. The electromagnetic wave emanating from the filament is a superposition of these wave trains, each having its own polarization direction. The sum of the randomly oriented wave trains results in a wave whose direction of polarization changes rapidly and randomly. Such a wave is said to be unpolarized. All common sources of light, including the Sun, incandescent and fluorescent lights, and flames, produce unpolarized light. However, natural light is often partially polarized because of multiple scatterings and reflections.

Sources of polarized light

Polarized light can be produced in circumstances where a spatial orientation is defined. One example is synchrotron radiation, where highly energetic charged particles move in a magnetic field and emit polarized electromagnetic waves. There are many known astronomical sources of synchrotron radiation, including emission nebulae, supernova remnants, and active galactic nuclei; the polarization of astronomical light is studied in order to infer the properties of these sources.

Natural light is polarized in passage through a number of materials, the most common being polaroid. Invented by the American physicist Edwin Land, a sheet of polaroid consists of long-chain hydrocarbon molecules aligned in one direction through a heat-treatment process. The molecules preferentially absorb any light with an electric field parallel to the alignment direction. The light emerging from a polaroid is linearly polarized with its electric field perpendicular to the alignment direction. Polaroid is used in many applications, including sunglasses and camera filters, to remove reflected and scattered light.

In 1808 the French physicist Étienne-Louis Malus discovered that, when natural light reflects off a nonmetallic surface, it is partially polarized. The degree of polarization depends on the angle of incidence and the index of refraction of the reflecting material. At one extreme, when the tangent of the incident angle of light in air equals the index of refraction of the reflecting material, the reflected light is 100 percent linearly polarized; this is known as Brewster’s law (after its discoverer, the Scottish physicist David Brewster). The direction of polarization is parallel to the reflecting surface. Because daytime glare typically originates from reflections off horizontal surfaces such as roads and water, polarizing filters are often used in sunglasses to remove horizontally polarized light, hence selectively removing glare.

The scattering of unpolarized light by very small objects, with sizes much less than the wavelength of the light (called Rayleigh scattering, after the English scientist Lord Rayleigh), also produces a partial polarization. When sunlight passes through Earth’s atmosphere, it is scattered by air molecules. The scattered light that reaches the ground is partially linearly polarized, the extent of its polarization depending on the scattering angle. Because human eyes are not sensitive to the polarization of light, this effect generally goes unnoticed. However, the eyes of many insects are responsive to polarization properties, and they use the relative polarization of ambient sky light as a navigational tool. A common camera filter employed to reduce background light in bright sunshine is a simple linear polarizer designed to reject Rayleigh scattered light from the sky.

Polarization effects are observable in optically anisotropic materials (in which the index of refraction varies with polarization direction) such as birefringent crystals and some biological structures and in optically active materials. Technological applications include polarizing microscopes, liquid crystal displays, and optical instrumentation for materials testing.

Energy transport

The transport of energy by light plays a critical role in life. About 1022 joules of solar radiant energy reaches Earth each day. Perhaps half of that energy reaches Earth’s surface, the rest being absorbed or scattered in the atmosphere. In turn, Earth continuously reradiates electromagnetic energy (predominantly in the infrared). Together, these energy-transport processes determine Earth’s energy balance, setting its average temperature and driving its global weather patterns. The transformation of solar energy into chemical energy by photosynthesis in plants maintains life on Earth. The fossil fuels that power industrial society—natural gas, petroleum, and coal—are ultimately stored organic forms of solar energy deposited on Earth millions of years ago.

The electromagnetic-wave model of light accounts naturally for the origin of energy transport. In an electromagnetic wave, energy is stored in the electric and magnetic fields; as the fields propagate at the speed of light, the energy content is transported. The proper measure of energy transport in an electromagnetic wave is its irradiance, or intensity, which equals the rate at which energy passes a unit area oriented perpendicular to the direction of propagation. The time-averaged irradiance I for a harmonic electromagnetic wave is related to the amplitudes of the electric and magnetic fields: I = ε0c2E0B0/2 watts per square metre.

The irradiance of sunlight at the top of Earth’s atmosphere is about 1,350 watts per square metre; this factor is referred to as the solar constant. Considerable efforts have gone into developing technologies to transform this solar energy into directly usable thermal or electric energy.