- Also called:
- antenatal development
- Key People:
- Bernard Siegfried Albinus
- Related Topics:
- gestation
- embryo
- fetus
- precocial young
- altricial state
Olfactory organ
Paired thickenings of ectoderm near the tip of the head infold and produce olfactory pits. These expand into sacs in which only a relatively small area becomes olfactory in function. Some epithelial cells in these regions remain as inert supporting elements. Others become spindle-shaped olfactory cells. One end of each olfactory cell projects receptive olfactory hairs beyond the free surface of the epithelium. From the other end a nerve fibre grows back and makes a connection within the brain.
Gustatory organ
Most taste buds arise on the tongue. Each bud, a barrel-shaped specialization within the epithelium that clothes certain lingual papillae (small projections on the tongue), is a cluster of tall cells, some of which have differentiated into taste cells whose free ends bear receptive gustatory hairs. Sensory nerve fibres end at the surface of such cells. Other tall cells are presumably inertly supportive in function.
Eye
The earliest indication of the eyes is a pair of shallow grooves on the sides of the forebrain. The grooves quickly become indented optic cups, each connected to the brain by a slender optic stalk. Most of the cup will become the retina, but its rim represents the epithelial part of the insensitive ciliary body and iris. The thicker inner layer of the cup becomes the neural layer of the retina, and by the sixth month three strata of neurons are recognizable in it: (1) visual cells, each bearing either a photoreceptive rod or a cone at one end, (2) bipolar cells, intermediate in position, and (3) ganglion cells, which sprout axons that grow back through the optic stalk and make connections within the brain. The thin outer layer of the cup remains a simple epithelium whose cells gain pigment and make up the pigment epithelium of the retina.
The lens arises as a thickening of the ectoderm adjacent to the optic cup. It inpockets to form a lens vesicle and then detaches. The cells of its back wall become tall, transparent lens fibres. Mesoderm surrounding the optic cup specializes into two accessory coats. The outer coat, the tough, white sclera, is continuous with the transparent cornea. The inner coat, the vascular choroid, continues as the vascular and muscular ciliary body and the vascularized tissue of the iris. The eyelids are folds of adjacent skin, and from the inside of each upper lid several lacrimal glands bud out.
Ear
The projecting part (auricle) of the external ear develops from hillocks on the first and second branchial arches. The ectodermal groove between those arches deepens and becomes the external auditory canal. The auditory tube and tympanic cavity—the cavity at the inner side of the eardrum—are expansions of the endodermal pouch located between the first and second branchial arches. The area where ectodermal groove and endodermal pouch come in contact is the site of the future eardrum. The chain of three auditory ossicles (small bones) that stretches across the tympanic cavity is a derivative of the first and second arches.
The epithelium of the internal ear is at first a thickening of ectoderm at a level midway of the hindbrain. This plate inpockets and pinches off as a closed sac, the otocyst. Its ventral part elongates and coils to resemble a snail’s shell, thereby forming the cochlear duct, or seat of the organ of hearing. A middle region of the otocyst becomes chambers known as the utricle and saccule, related to the sense of balance. The dorsal part of the otocyst remodels drastically into three semicircular ducts, related to the sense of movement. Fibres of the acoustic nerve grow among specialized receptive cells differentiated in certain regions of these three divisions.
Mesodermal derivatives
Skeletal system
Except for part of the skull, all bones pass through three stages of development: membranous, cartilaginous, and osseous. The earliest ossification centres appear in the eighth week, but some do not arise until childhood years and even into adolescence.
Axial skeleton
The ventromedial walls (the walls toward the front and the midline) of the paired somites break down, and their cells migrate toward the axial notochord and surround it. Differentiation and growth of these segmental masses produce the jointed vertebrae. Ribs also grow out of each primitive vertebral mass, but they become long only in the thoracic region. Here their ventral ends join to form sternal bars, which fuse to form the sternum.
The skull has three components, different in origin. Its basal region consists of bones that pass through the three typical stages of development. By contrast, the sides and roof of the skull develop directly from membranous primordia, or rudiments. The jaws are derivatives of the first pair of cartilaginous branchial arches but develop as membrane bone. Ventral ends of the second to fifth arches contribute the cartilages of the larynx and the hyoid bone (a bone of horseshoe shape at the base of the tongue). Dorsal ends of the first and second arches become the three auditory ossicles (the small bones in the middle ear).
Appendicular skeleton
The limb bones develop in three stages from axial condensations in the local mesoderm. The shoulder and pelvic supports are comparable sets, as are the bones of the arms and legs.
Articulations
Some type of joint exists wherever bones meet. Joints that allow little or no movement consist of connective tissue, cartilage, or bone. Movable joints arise as fluid-filled clefts in mesoderm, which condenses peripherally into a fibrous capsule.
Muscular system
Much of each somite differentiates into myoblasts (primitive muscle cells) that become voluntary muscle fibres. Aggregations of such fibres become muscles of the neck and trunk. Muscles of the head and some of the neck muscles originate from the mesoderm of branchial arches. Muscles of the limbs seemingly arise directly from local mesoderm. In general, muscle primordia may fuse into composites, split into subdivisions, or migrate away from their sites of origin. During these changes they retain their original nerve supply. Regardless of differences in source of origin, all voluntary muscle fibres are of the same striated type (marked by dark and light stripes). Spontaneous movements begin to occur in embryos about 10 weeks old. In general, involuntary muscle differentiates from mesoderm surrounding hollow organs; only the cardiac muscle type is striated.
Vascular system
All hollow organs, including arteries, veins, and lymphatics, are lined with epithelium—the principal functional tissue—and are ensheathed with muscular and fibrous coats.
Blood vessels
Primitive blood vessels arise in the mesoderm as tiny clefts bordered by flat endothelial cells. Growth and coalescence produce networks, out of which favoured channels persist as definite vessels, while others decline and disappear. A bilaterally symmetrical system of vessels is well represented in embryos four weeks old. This early plan is profoundly altered and made somewhat asymmetrical during the second month by fusions, atrophies, emergence of new vessels, and rerouting of older ones. The alterations reflect adjustments to changing form and pattern within the developing organ systems.
Arteries cranial to the heart (headward of the heart) are mostly products of the paired aortic arches, which course axially within the branchial arches, thus interconnecting the ventral aorta with paired dorsal aortas. The third pair of aortic arches becomes the common carotids; the fourth pair, the aortic arch and brachiocephalic artery; the fifth pair, the pulmonary arteries and ductus arteriosus. The dorsal aortas fuse into the single descending aorta, which bears three sets of paired segmental branches. The dorsal set becomes the subclavian, intercostal, and lumbar arteries. The lateral set becomes arteries to the diaphragm, the adrenal glands, the kidneys, and the sex glands. The ventral set becomes the celiac, mesenteric, and umbilical arteries. Axial arteries to both sets of limb buds emerge from an original plexus, but they undergo drastic alteration and extensive replacement.
The primitive veins are symmetrically bilateral. They consist of vitelline veins from the yolk sac, umbilical veins from the placenta, and precardinal and postcardinal veins from the cranial and caudal regions (the regions toward the head and toward the tail) of the body. Drastic transformations occur in all of these, and new pairs of veins (subcardinals and supracardinals) arise also, caudal to the heart. From the vitellines come chiefly the portal and hepatic veins. The left umbilical becomes the main return from the placenta by making a diagonal channel, the ductus venosus, through the liver to the heart. The precardinal veins change their names to the internal jugulars, but near the heart an interconnection permits both to drain into a common stem, then called the superior vena cava. Caudal to the heart, the postcardinals virtually disappear, and all blood return shifts to the right side as a new compound vessel, the inferior vena cava, becomes dominant. Pulmonary veins open into the left atrium. Veins from the limb buds organize from an early peripheral border vein.
Lymphatic vessels
The lymph vessels develop independently in close association with the veins. Linkages produce the thoracic duct, which is the main drainage return for lymph. Masses of lymphocytes accumulate about lymphatic vessels and organize as lymph nodes. The spleen has somewhat similar tissue, but its channels are supplied with blood.
Heart
Fusion combines two endothelial tubes, and these are surrounded by a mantle of mesoderm that will become the muscular and fibrous coats of the heart. At three weeks the heart is a straight tube that is beginning to beat. Starting at the head end, four regions can be recognized: bulbus, ventricle, atrium, and sinus venosus. Since the heart is anchored at both ends, rapid elongation forces it to bend. In doing this, the sinus venosus–atrium and bulbus-ventricle reverse their original relations. Further development concerns the transformation of a single-chambered heart into one with four chambers.
The atrium becomes subdivided by the growth of two incomplete partitions, or septa, placed close together and each covering the defect in the other. The ventricle also subdivides, but by a single complete partition. A canal, connecting atria and ventricles, becomes two canals. The bulbus is absorbed into the right ventricle, and its continuation (the truncus) subdivides lengthwise, forming the aorta and the pulmonary artery. The right horn of the sinus venosus is absorbed into the right atrium, together with the superior and inferior venae cavae, which originally drained into the sinus. The transverse portion of the sinus persists as the coronary sinus. The pulmonary veins retain their early drainage into the left atrium. Important valves develop and ensure flow within the heart, from atria to ventricles, and outward from the ventricles into the aorta and the pulmonary artery.
Birth initiates breathing, and the abandonment of the placental circulation follows. These changes entail a drastic rerouting of blood through the heart. As a result, the two atrial septa fuse and no longer permit blood to pass from the right atrium to the left atrium. Blood in the pulmonary artery no longer bypasses the lungs; previously it had passed to the aorta directly through a shunt offered by the ductus arteriosus. As a sequel to these changes, the abandoned umbilical arteries, umbilical vein, ductus venosus, and ductus arteriosus all collapse and become fibrous cords.