Table of Contents
References & Edit History Related Topics

Control of radiation risks

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://www.britannica.com/science/radiation
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

In view of the fact that radiation is now assumed to play a role in mutagenic or carcinogenic activity, any procedure involving radiation exposure is considered to entail some degree of risk. At the same time, however, the radiation-induced risks associated with many activities are negligibly small in comparison with other risks commonly encountered in daily life. Nevertheless, such risks are not necessarily acceptable if they can be easily avoided or if no measurable benefit is to be gained from the activities with which they are associated. Consequently, systematic efforts are made to avoid unnecessary exposure to ionizing radiation in medicine, science, and industry. Toward this end, limits have been placed on the amounts of radioactivity (Tables 9 and 12) and on the radiation doses that the different tissues of the body are permitted to accumulate in radiation workers or members of the public at large.

Although most activities involving exposure to radiation for medical purposes are highly beneficial, the benefits cannot be assumed to outweigh the risks in situations where radiation is used to screen large segments of the population for the purpose of detecting an occasional person with an asymptomatic disease. Examples of such applications include the “annual” chest X-ray examination and routine mammography. Each use of radiation in medicine (and dentistry) is now evaluated for its merits on a case-by-case basis.

Other activities involving radiation also are assessed with care in order to assure that unnecessary exposure is avoided and that their presumed benefits outweigh their calculated risks. In operating nuclear power plants, for example, much care is taken to minimize the risk to surrounding populations. Because of such precautions, the total impact on health of generating a given amount of electricity from nuclear power is usually estimated to be smaller than that resulting from the use of coal for the same purpose, even after allowances for severe reactor accidents such as the one at Chernobyl.

Cornelius A. Tobias Arthur Canfield Upton

Biologic effects of non-ionizing radiation

Effects of Hertzian waves and infrared rays

Hertzian waves

The effects of Hertzian waves (electromagnetic waves in the radar and radio range) and of infrared rays usually are regarded as equivalent to the effect produced by heating. The longer radio waves induce chiefly thermal agitation of molecules and excitation of molecular rotations, while infrared rays excite vibrational modes of large molecules and release fluorescent emission as well as heat. Both of these types of radiation are preferentially absorbed by fats containing unsaturated carbon chains.

The fact that heat production resulted from bombardment of tissue with high-frequency alternating current (wavelengths somewhat longer than the longest radio waves) was discovered in 1891, and the possibility of its utilization for medical purposes was realized in 1909, under the term diathermy. This method of internal heating is beneficial for relieving muscle soreness and sprain (see also below). Diathermy can be harmful, however, if so much internal heat is given that the normal cells of the body suffer irreversible damage. Since humans have heat receptors primarily in their skin, they cannot be forewarned by pain when they receive a deep burn from diathermy. Sensitive regions easily damaged by diathermy are those having reduced blood circulation. Cataracts of the eye lens have been produced in animals by microwave radiation applied in sufficient intensity to cause thermal denaturation of the lens protein.

Microwave ovens have found widespread use in commercial kitchens and private homes. These can heat and cook very rapidly and, if used properly, constitute no hazard to operators. In the radio-television industry and in the radar division of the military, persons are sometimes exposed to high densities of microwave radiation. The hazard is particularly pronounced with exposure to masers, capable of generating very high intensities of microwaves (e.g., carbon dioxide masers). The biologic effects depend on the absorbency of tissues. At frequencies higher than 150 megahertz, significant absorption takes place. The lens of the human eye is most susceptible to frequencies around 3,000 megahertz, which can produce cataracts. At still higher frequencies, microwaves interact with superficial tissues and skin, in much the same manner as infrared rays.

Acute effects of microwaves become significant if a considerable temperature rise occurs. Cells and tissues eventually die at temperatures of about 43° C. Microwave heating is minimized if the heat that results from energy absorption is dissipated by radiation, evaporation, and heat conduction. Normally one-hundredth of a watt (10 milliwatts) can be so dissipated, and this power limit generally has been set as the permissible dose. Studies with animals have indicated that, below the permissible levels, there are negligible effects to various organ systems. Microwaves or heat applied to testes tend strongly to decrease the viability of sperm. This effect, however, is not significant at the “safe” levels.

In the late 1980s, some investigators in the Soviet Union documented a variety of nonthermal effects of microwaves and recommended about 1,000 times lower safe occupational dose levels than are still in force in the United States today. Most prominent among the nonthermal effects appear to be those on the nervous system. Such effects have resulted in untimely tiring, excitability, and insomnia registered by persons handling high-frequency radio equipment. Nonthermal effects have been observed on the electroencephalogram of rabbits. These effects may be due to changes in the properties of neural membranes or to denaturation of macromolecules.

Infrared rays

A significant part of solar energy reaches the Earth in the form of infrared rays. Absorption and emission by the human body of these rays play an important part in temperature exchange and regulation of the body. The principles of infrared emission and absorption must be considered in the design of air conditioning and clothing.

Overdosage of infrared radiation, usually resulting from direct exposure to a hot object (including heating lamps) or flame, can cause severe burns. While infrared exposure is a hazard near any fire, it is particularly dangerous in the course of nuclear chain reactions. In the course of a nuclear detonation, a brief but very intense emission of infrared occurs, together with visible and ultraviolet light emitted from the fireball (flash burns). Of the total energy of nuclear explosion, as much as one-third may be in the form of thermal radiation, moving with the velocity of light. The rays will arrive almost instantaneously at regions removed from the source by only a few kilometres. Smoke or fog can effectively scatter or absorb the infrared components, and even thin clothing can greatly reduce the severity of burn effects.