von Neumann algebra

mathematics
Also known as: W*-algebra, operator ring, ring of operators

Learn about this topic in these articles:

development by von Neumann

  • John von Neumann
    In John von Neumann: Princeton, 1930–42

    …of operators, now known as von Neumann algebras (1929 through the 1940s). Other achievements include a proof of the quasi-ergodic hypothesis (1932) and important work in lattice theory (1935–37). It was not only the new physics that commanded von Neumann’s attention. A 1932 Princeton lecture, “On Certain Equations of Economics…

    Read More

work by Jones

  • Vaughan Jones
    In Vaughan Jones

    In his study of von Neumann algebras (algebras of bounded operators acting on a Hilbert space), Jones came across polynomials that were invariant for knots and links—simple closed curves in three-dimensional space. Initially it was suspected that these were essentially Alexander polynomials (named after the work of the American…

    Read More

ring, in mathematics, a set having an addition that must be commutative (a + b = b + a for any a, b) and associative [a + (b + c) = (a + b) + c for any a, b, c], and a multiplication that must be associative [a(bc) = (ab)c for any a, b, c]. There must also be a zero (which functions as an identity element for addition), negatives of all elements (so that adding a number and its negative produces the ring’s zero element), and two distributive laws relating addition and multiplication [a(b + c) = ab + ac and (a + b)c = ac + bc for any a, b, c]. A commutative ring is a ring in which multiplication is commutative—that is, in which ab = ba for any a, b.

The simplest example of a ring is the collection of integers (…, −3, −2, −1, 0, 1, 2, 3, …) together with the ordinary operations of addition and multiplication.

This article was most recently revised and updated by William L. Hosch.