print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

News

Techniques

Extended-range, or long-range, weather forecasting has had a different history and a different approach from short- or medium-range forecasting. In most cases, it has not applied the synoptic method of going forward in time from a specific initial map. Instead, long-range forecasters have tended to use the climatological approach, often concerning themselves with the broad weather picture over a period of time rather than attempting to forecast day-to-day details.

There is good reason to believe that the limit of day-to-day forecasts based on the “initial map” approach is about two weeks. Most long-range forecasts thus attempt to predict the departures from normal conditions for a given month or season. Such departures are called anomalies. A forecast might state that “spring temperatures in Minneapolis have a 65 percent probability of being above normal.” It would likely be based on a forecast anomaly map, which shows temperature anomaly patterns. The maps do not attempt to predict the weather for a particular day, but rather forecast trends (i.e., warmer than normal) for an extended amount of time, such as a season (i.e., spring).

The U.S. Weather Bureau began making experimental long-range forecasts just before the beginning of World War II, and its successor, the National Weather Service, continues to express such predictions in probabilistic terms, making it clear that they are subject to uncertainty. Verification shows that forecasts of temperature anomalies are more reliable than those of precipitation, that monthly forecasts are better than seasonal ones, and that winter months are predicted somewhat more accurately than other seasons.

Prior to the 1980s the technique commonly used in long-range forecasting relied heavily on the analog method, in which groups of weather situations (maps) from previous years were compared to those of the current year to determine similarities with the atmosphere’s present patterns (or “habits”). An association was then made between what had happened subsequently in those “similar” years and what was going to happen in the current year. Most of the techniques were quite subjective, and there were often disagreements of interpretation and consequently uneven quality and marginal reliability.

Persistence (warm summers follow warm springs) or anti-persistence (cold springs follow warm winters) also were used, even though, strictly speaking, most forecasters consider persistence forecasts “no-skill” forecasts. Yet, they too have had limited success.

Prospects for new procedures

In the last quarter of the 20th century the approach of and prospects for long-range weather forecasting changed significantly. Stimulated by the work of Jerome Namias, who headed the U.S. Weather Bureau’s Long-Range Forecast Division for 30 years, scientists began to look at ocean-surface temperature anomalies as a potential cause for the temperature anomalies of the atmosphere in succeeding seasons and at distant locations. At the same time, other American meteorologists, most notably John M. Wallace, showed how certain repetitive patterns of atmospheric flow were related to each other in different parts of the world. With satellite-based observations available, investigators began to study the El Niño phenomenon. Atmospheric scientists also revived the work of Gilbert Walker, an early 20th-century British climatologist who had studied the Southern Oscillation, the aforementioned up-and-down fluctuation of atmospheric pressure in the Southern Hemisphere. Walker had investigated related air circulations (later called the Walker Circulation) that resulted from abnormally high pressures in Australia and low pressures in Argentina or vice versa.

All of this led to new knowledge about how the occurrence of abnormally warm or cold ocean waters and of abnormally high or low atmospheric pressures could be interrelated in vast global connections. Knowledge about these links—El Niño/Southern Oscillation (ENSO)—and about the behaviour of parts of these vast systems enables forecasters to make better long-range predictions, at least in part, because the ENSO features change slowly and somewhat regularly. This approach of studying interconnections between the atmosphere and the ocean may represent the beginning of a revolutionary stage in long-range forecasting.

Since the mid-1980s, interest has grown in applying numerical weather prediction models to long-range forecasting. In this case, the concern is not with the details of weather predicted 20 or 30 days in advance but rather with objectively predicted anomalies. The reliability of long-range forecasts, like that of short- and medium-range projections, has improved substantially in recent years. Yet, many significant problems remain unsolved, posing interesting challenges for all those engaged in the field.

John J. Cahir