logic, Study of inference and argument. Inferences are rule-governed steps from one or more propositions, known as premises, to another proposition, called the conclusion. A deductive inference is one that is intended to be valid, where a valid inference is one in which the conclusion must be true if the premises are true (see deduction; validity). All other inferences are called inductive (see induction). In a narrow sense, logic is the study of deductive inferences. In a still narrower sense, it is the study of inferences that depend on concepts that are expressed by the “logical constants,” including: (1) propositional connectives such as “not,” (symbolized as ¬), “and” (symbolized as ∧), “or” (symbolized as ∨), and “if-then” (symbolized as ⊃), (2) the existential and universal quantifiers, “(∃x)” and “(∀x),” often rendered in English as “There is an x such that …” and “For any (all) x, …,” respectively, (3) the concept of identity (expressed by “=”), and (4) some notion of predication. The study of the logical constants in (1) alone is known as the propositional calculus; the study of (1) through (4) is called first-order predicate calculus with identity. The logical form of a proposition is the entity obtained by replacing all nonlogical concepts in the proposition by variables. The study of the relations between such uninterpreted formulas is called formal logic. See also deontic logic; modal logic.
logic Article
logic summary
Below is the article summary. For the full article, see logic.
universal Summary
Universal, in philosophy, an entity used in a certain type of metaphysical explanation of what it is for things to share a feature, attribute, or quality or to fall under the same type or natural kind. A pair of things resembling each other in any of these ways may be said to have (or to
axiomatic method Summary
Axiomatic method, in logic, a procedure by which an entire system (e.g., a science) is generated in accordance with specified rules by logical deduction from certain basic propositions (axioms or postulates), which in turn are constructed from a few terms taken as primitive. These terms and axioms
syllogistic Summary
Syllogistic, in logic, the formal analysis of logical terms and operators and the structures that make it possible to infer true conclusions from given premises. Developed in its original form by Aristotle in his Prior Analytics (Analytica priora) about 350 bce, syllogistic represents the earliest
ontology Summary
Ontology, the philosophical study of being in general, or of what applies neutrally to everything that is real. It was called “first philosophy” by Aristotle in Book IV of his Metaphysics. The Latin term ontologia (“science of being”) was felicitously invented by the German philosopher Jacob