print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Key People:
Shuji Nakamura
Akasaki Isamu
Amano Hiroshi
Related Topics:
technology
material

News

Metal observed repairing itself, a breakthrough in materials science Dec. 26, 2024, 9:13 AM ET (Jerusalem Post)

The basic function of computers and communications systems is to process and transmit information in the form of signals representing data, speech, sound, documents, and visual images. These signals are created, transmitted, and processed as moving electrons or photons, and so the basic materials groups involved are classified as electronic and photonic. In some cases, materials known as optoelectronic bridge these two classes, combining abilities to interact usefully with both electrons and photons.

Among the electronic materials are various crystalline semiconductors; metalized film conductors; dielectric films; solders; ceramics and polymers formed into substrates on which circuits are assembled or printed; and gold or copper wiring and cabling.

Photonic materials include a number of compound semiconductors designed for light emission or detection; elemental dopants that serve as photonic performance-control agents; metal- or diamond-film heat sinks; metalized films for contacts, physical barriers, and bonding; and silica glass, ceramics, and rare earths for optical fibres.

Electronic materials

Between 1955 and 1990, improvements and innovations in semiconductor technology increased the performance and decreased the cost of electronic materials and devices by a factor of one million—an achievement unparalleled in the history of any technology. Along with this extraordinary explosion of technology has come an exponentially upward spiral of the capital investment necessary for manufacturing operations. In order to maintain cost-effectiveness and flexibility, radical changes in materials and manufacturing operations will be necessary.

Semiconductor crystals

Silicon

Bulk semiconductor silicon for the manufacture of integrated circuits (sometimes referred to as electronic-grade silicon) is the purest material ever made commercially in large quantities. One of the most important factors in preparing this material is control of such impurities as boron, phosphorus, and carbon (not to be confused with the dopants added later during circuit production). For the ultimate levels of integrated-circuit design, stray contaminant atoms must constitute less than 0.1 part per trillion of the material.

For fabrication into integrated circuits, bulk semiconductor silicon must be in the form of a single-crystal material with high crystalline perfection and the desired charge-carrier concentration. The size of the silicon ingot, or boule, has been scaled up in recent years, in order to provide wafers of increasing diameter that are demanded by the economics of integrated-circuit manufacturing. Most commonly, a 60-kilogram (130-pound) charge is grown to an ingot with a diameter of 200 millimetres (8 inches), but the semiconductor industry will soon require ingots as large as 300 millimetres. The ingots are then converted into wafers by machining and chemical processes.

III–V compounds

Although silicon is by far the most commonly used crystal material for integrated circuits, a significant volume of semiconductor devices and circuits employs III–V technology, so named because it is based on crystalline compounds formed by combining metallic elements from column III and nonmetallic elements from column V of the periodic table of chemical elements. When the elements are gallium and arsenic, the semiconductor is called gallium arsenide, or GaAs. However, other elements such as indium, phosphorus, and aluminum are often used in the compound to achieve specific performance characteristics.

For electronic applications, the III–V semiconductors offer the basic advantage of higher electron mobility, which translates into higher operating speeds. In addition, devices made with III–V compounds provide lower voltage operation for specific functions, radiation hardness (especially important for satellites and space vehicles), and semi-insulating substrates (avoiding the presence of parasitic capacitance in switching devices).

III–V materials are more difficult to handle than silicon, and a III–V wafer or substrate usually is less than half the size of a silicon wafer. In addition, a gallium arsenide wafer entering the processing facility can be expected to cost 10 to 20 times as much as a silicon wafer, although that cost difference narrows somewhat after fabrication, packaging, and testing. Nevertheless, there is one major characteristic of III–V materials with which silicon cannot compete: a III–V compound can be tailored to generate or detect photons of a specific wavelength. For example, an indium gallium arsenide phosphide (InGaAsP) laser can generate radiation at 1.55 micrometres to carry digitally coded information streams. (See below Photonic materials.) This means that a III–V component can fill both electronic and photonic functions in the same integrated circuit.

Photoresist films

Patterning polished wafers with an integrated circuit requires the use of photoresist materials that form thin coatings on the wafer before each step of the photolithographic process. Modern photoresists are polymeric materials that are modified when exposed to radiation (either in the form of visible, ultraviolet, or X-ray photons or in the form of energetic electron beams). A photoresist typically contains a photoactive compound (PAC) and an alkaline-soluble resin. The PAC, mixed into the resin, renders it insoluble. This mixture is coated onto the semiconductor wafer and is then exposed to radiation through a “mask” that carries the desired pattern. Exposed PAC is converted into an acid that renders the resin soluble, so that the resist can be dissolved and the exposed substrate beneath it chemically etched or metallically coated to match the circuit design.

Besides practical properties such as shelf life, cost, and availability, the key properties of a photoresist include purity, etching resistance, resolution, contrast, and sensitivity. As the feature sizes of integrated circuits shrink in each successive generation of microchips, photoresist materials are challenged to handle shorter wavelengths of light. For example, the photolithography of current designs (with features that have shrunk to less than one micrometre) is based on ultraviolet radiation in the wavelength range of 365 to 436 nanometres, but, in order to define accurately the smaller features of future microchips (less than 0.25 micrometre), shorter wavelengths will be necessary. The problem here is that electromagnetic radiation in such frequency regions is weaker. One solution is to use the chemically amplified photoresist, or CAMP. The sensitivity of a photoresist is measured by its quantum efficiency, or the number of chemical events that occur when a photon is absorbed by the material. In CAMP material, the number of events is dramatically increased by subsequent chemical reactions (hence the amplification), which means that less light is needed to complete the process.