print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: film technology, movie technology
Related Topics:
film
technology

The basis of all animation is the building up, frame by frame, of the moving picture by exact timing and choreography of both movement and sound. All film movement is achieved by projecting during every second of time a certain number of frames, normally 24, each a still photograph minutely varied from its predecessor, which record the successive phases of the subject’s movement before the camera. The same motion, or a stylized or caricatured version of it, can be achieved by “stop-motion” or “stop-action” cinematography, the frame-by-frame photographing of a similarly phased series of drawings (see Figure 9 ) or the phased movement of such objects as puppets, marionettes, or commercial products. And, as in live filming, the camera itself can create movement by tracking into a scene or panning across it. The great majority of animated films are short and have always been so for obvious reasons. When each second of action requires, for the fullest animation, 24 adjustments of the image, a minute’s action may call for many hundreds of drawings.

The range of techniques in animation production is broad. The basic form is the simple, outlined figure, however, that moves against a simple, outlined background.

Figural basis of animation

The development of cel (or cell) animation permitted the phased movements of the figures to be traced onto a succession of transparent celluloid sheets and superimposed, in turn, onto a single static drawing representing the background. With this technique the background could be drawn in somewhat greater detail and tonal qualities introduced through shading, while the figure itself became a black silhouette, blotting out the background when the cels were superimposed. Multiple cel animation—the superimposition of several cel layers, each carrying different figures or parts of figures requiring special care in animation—allowed increased complexity in the image with minimum work load for the artist-animators. With the more modern forms of color film introduced in the early 1930s, opaque paints and colored inks could be used on the cels. Cel animation required the use of a so-called rostrum camera, which photographs downward onto the background with its series of superimposed cel layers pegged into place to secure accurate registration.

Noncellular animation

Other forms of animation include silhouette animation, developed by Lotte Reiniger in Germany during the 1920s. It uses jointed, flat-figure marionettes whose poses are minutely readjusted for each photographic frame. Movement is similarly simulated in puppet animation, which photographs solid three-dimensional figures in miniature sets. The puppets are often made of a malleable yet stable material, such as clay, so that the carefully phased movements may be adjusted between the exposures of successive frames. Even people may be photographed frame by frame, as in the so-called pixilation process used by the Canadian filmmaker Norman McLaren in his short film Neighbors (1952), which makes human beings look like automatons.

Although abstract animation can be realized through orthodox animation techniques (as in parts of Fantasia, 1940), it may also be inked or painted directly onto the film. This form of abstract animation was pioneered in the 1920s with the individual and collaborative work of the German Hans Richter and the Swede Viking Eggeling and continued in the 1930s with the films of Len Lye, a New Zealander also known for his abstract sculpture. McLaren, too, experimented with a wide range of techniques for animating directly on film; he even created many of his scores by stenciling directly onto the sound track rather than recording in the traditional manner. Since the 1970s, computers have often been used to generate abstract or stylized patterns, and means were developed to circumvent photography by transferring the results directly to 35 mm.

Planning

The preparation of these films, whatever their length or form, follows a similar process. First comes the story, plot, action, or situational idea, which may be a written treatment with or without supporting sketches. It describes the continuity of what it is proposed should take place on the screen, the nature of the cartoon or puppet characters, the graphic stylization of the film as a whole, and similar considerations. Such a treatment, perhaps very brief, precedes any fuller scripting or other elaboration that may take place.

Since visual emphasis is the key to animation, and sound its close counterpart, the sooner ideas are translated into pictures the better. The “storyboard” provides the continuity of the action, which is worked out scene by scene simultaneously with the animation script. In the storyboard the story is told and to some extent graphically styled in a succession of key sketches with captions and fragments of dialogue, much like a cartoon strip but with much fuller treatment. A feature-length film could easily require a final continuity of several hundred such sketches.

Meanwhile, an animation director is also preparing modeling drawings for the principal characters and drawings establishing the backgrounds, or settings, for the film. These begin to indicate the general graphic style and, when color is involved, the color scheme and decor to be used. The modeling drawings must indicate the nature and temperament of the characters as well as their appearance when seen from a variety of angles and using a number of characteristic gestures. These will act as guides for the key animators, who with their assistants must bring the figures to dramatic life through the succession of final drawings created on the drawing board.

Animated films are, in effect, choreographed; since mobility involves time, the movements must be exactly timed and so deployed through the right number of successive drawings, like notes in music deployed through bars in a score. When the characters speak or sing, their lip movements must be synchronized with the words they appear to utter. When sound tracks, both dialogue and music, are prerecorded, the animators have an exact time scheme to follow; if the tracks are not prerecorded, then the “scoring” of the action will control the subsequent timing of the speech and music at recording stage. The timing in either case is predetermined on paper in a workbook, which grades the progression of the animators’ drawings frame by frame with the same precision as a musical score. A similar control in the form of a time chart may be created by the director as a guide for the composer. A third control, the so-called dope sheet or camera exposure chart, guides the rostrum cameraman in the frame-by-frame setups and sequence of cels or backgrounds.

Execution

When the exacting labor of animation is under way, difficult moments in the choreography of the figures may be “line-tested”—that is, outlined in pencil, photographed, and tested out on the screen for rhythm and characterization. The key, or senior, animators draw, or “cartoon,” the highlights, or salients, of the movement, perhaps the five or more drawings out of the 24 per second that will give the special edge of liveliness or characterization to the movements. Assistant animators, sometimes called in-betweeners, close the gaps by completing the intermediate drawings. The smaller the animation unit, the greater the burden each artist has to bear in the preparation of final drawings. These drawings, the backgrounds of which remain on drawing paper, are transferred to the cels by specialized artists, who trace the animators’ work and paint over it with opaque coloring. The work of tracing and painting can be saved when the animators draw directly on the cels with colored chinagraph pencils, which they can rub out or correct without harm. When the picture track and the sound track with speech, sound effects, and music dubbed together are completed under the control of the director and the editor, a “married print” can be made, with the track recorded optically.