Wide-screen and stereoscopic pictures

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: film technology, movie technology
Related Topics:
film
technology

Until the early 1950s, the screen shape, or aspect ratio (expressed as the ratio of frame width to frame height), was generally 1.33 to 1, or 4 to 3. In the mid-1950s the ratio became standardized at 1.85 to 1 in the United States and 1.66 or 1.75 to 1 in Europe. These slightly wider images were accomplished by using the same film but smaller aperture plates in the projector and by using shorter-focal-length lenses.

Many people have felt that, while vision at the extreme sides of the vision field does not usually contribute much information to the eyes, it does add substantially to the illusion of reality when it is present. Hence, there have been periods when film producers have attempted to introduce extremely wide formats. As early as 1929, Grandeur films were presented using 70-mm instead of the standard 35-mm film to give a wider field of view.

In 1952 a radical attack was made on wide-screen projection in the form of the Cinerama, which used three projectors and a curved screen. The expanded field of view gave a remarkable increase in the illusion of reality, especially with such exciting and spectacular subjects as a ride down a toboggan slide. There were technical problems, including the necessity of carrying three cameras bolted together at the correct angles on the toboggan or other carrier, synchronization of the three separate films, and matching of the image structure and brightness at the joining edges on the screen. After 1963 Cinerama replaced its three-film process with a 70-mm anamorphic system with an aspect ratio of 2.75 to 1.

The use of anamorphic lenses for wide-screen projection was introduced by CinemaScope in 1953. An anamorphic optical system photographs with a different magnification horizontally than it does vertically. The lens seems to squeeze the image so that on the film itself figures appear tall and thin. A lens on the projector reverses the effect, so that the images on the screen reacquire normal proportions.

In 1955 Todd-AO introduced a wider film (photographed on a 65-mm negative and printed on a 70-mm positive for projection), with several sound tracks added. Like anamorphic systems, the wider format could be achieved with a single projector. The first two Todd-AO productions, Oklahoma! (1955) and Around the World in 80 Days (1956), were made at 30 frames per second for a nearly flicker-free image; 70-mm films are now photographed and projected at 24 frames per second.

colour television picture tube
More From Britannica
television: Motion-picture recording

Amusement parks and world’s fairs have often featured 360-degree projection. The first system was presented at the Disneyland amusement park in 1955. At first, the projection involved 11 16-mm projectors and screens and, later, nine 35-mm projectors. The audience stood on a low platform in the middle. The result was extremely realistic. In one scene, showing the view from a cable car in San Francisco, the viewers were seen involuntarily to lean over on the curves, as if they were actually on the cable car. The format, however, has limited uses for general storytelling.

In the 1980s, efforts to improve picture quality took two routes: increase in frame rate (Showscan operates at 60 frames per second) or increase in overall picture size—height as well as width (IMAX and Futurevision). In these formats the sound tracks are usually printed on a separate, magnetic strip of film.

Another project intended to improve the illusion of reality in motion pictures has been stereoscopic, or three-dimensional, cinematography. “3-D” films use two cameras or one camera with two lenses. The centers of the lenses are spaced 2 1/2 to 2 3/4 inches apart to replicate the displacement between a viewer’s left and right eyes. Each lens records a slightly different view corresponding to the different view each eye sees in normal vision.

Despite many efforts to create “3-D without glasses” (notably in the U.S.S.R., where a screen of vertical slats was used for many years), audience members have had to wear one of two types of special glasses to watch 3-D films. In the early anaglyph system, one lens of the glasses was red and the other green (later blue). The picture on the screen viewed without glasses appeared as two slightly displaced images, one with red lines, the other with green. Each lens of the glasses darkened its opposite color so that each eye would see only the image intended for it.

The Polaroid system, used for commercial 3-D movies since the early 1950s, is based on a light-polarizing material developed by the American inventor Edwin H. Land in 1932. In this method, known as Natural Vision, two films are recorded with lenses that polarize light at different angles. The lenses on the glasses worn by spectators are similarly polarized so that each admits its corresponding view and blocks the other. Early versions of Polaroid 3-D used two interlocked projectors to synchronize the two pictures. A later system, revived in the 1970s and 1980s, stacked the left and right components vertically on half-frames two sprocket holes high. The images were converged by means of a mirror and/or prism.