By the end of the 19th century, marine navigation had evolved into a fully systematic technique, combining the simplicity and reliability required by its practitioners with the rigour and accuracy founded in the skills and knowledge of astronomers, mathematicians, cartographers, and instrument makers. Accurate and detailed sea charts and books of sailing directions were available for the planning of any proposed voyage. At any stage during the voyage, dependable almanacs, sextants, and chronometers made it possible to ascertain the ship’s position with great precision through observation of the altitudes and azimuths of a few familiar stars. Routine trigonometric procedures for making the needed computations had been introduced by Thomas H. Sumner of the United States in 1837 and Marcq Saint-Hilaire of France in 1875. These astronomical determinations were supplemented by dead reckoning, which had been made more trustworthy by the continued development of compasses and logs.

The navigational principles, techniques, and devices in use about 1900 formed a secure foundation upon which immense changes were superimposed during the 20th century. The advent of air travel and then space travel made it necessary to modify some of the concepts that had been developed for the period in which voyages had been restricted to the surface of the Earth. Many of the new problems were solved by the application of technological innovations, notably radio communication and radio navigation, electronic instruments, and high-speed digital computers.

Edward W. Anderson Tom S. Logsdon

Speed measurement

The Pitot tube

The classical methods of measuring the speed of vessels through water are described in the section Distance and speed measurements. In the mid-18th century the French hydraulic engineer Henri Pitot, studying the flow of water in rivers and canals, invented a device—now called the Pitot tube—for measuring the speed of the flow past a given point. The Pitot tube has been applied to the measurement of wind speed, and it is equally useful as a log for ships or aircraft. A typical Pitot marine log consists of a pair of thin-walled tubes projecting through the bottom of the ship and bent so as to face the direction of motion. One tube is open at the forward end; the opening is referred to as the dynamic-pressure orifice. The second tube is closed at the end but has openings at right angles to its length; these openings are the static-pressure orifices. When the ship is dead in the water, the pressure is the same in the dynamic and static connections, but when the vessel moves ahead, the dynamic pressure exceeds the static pressure by an amount that varies as the square of the ship’s speed. Another part of the log consists of a centrifugal water pump driven by a variable-speed electric motor. The dynamic pressure that is produced by such a pump varies as the square of the speed of the motor. The pressure produced by the motion of the ship is exerted against one face of a diaphragm; that produced by the pump is exerted against the other. Movement of the diaphragm operates the speed control of the motor so as to equalize the two pressures and thereby make the speed of the motor directly proportional to the speed of the ship. A magneto attached to the shaft of the motor generates a voltage proportional to the speed, and on the ship’s bridge a voltmeter calibrated in knots provides a continuous indication of the progress of the vessel. Analogous Pitot logs, with less bulky attachments for translating air pressure differentials to speed readings, are almost universally installed in aircraft.

Electronic means

In ships, a modern form of log incorporates a pair of electroacoustic transducers. One of these launches a sound wave from a point close to the keel; the second, a few metres ahead or astern, detects this wave and measures the time required for it to traverse the known distance. Motion of the ship relative to the water changes this interval in a way directly related to the speed of the ship. The speed of sound through water is slightly affected by temperature and salinity; even so, the electroacoustic log is much more accurate than its mechanical forerunners, and it is much less susceptible to malfunction caused by fouling by barnacles or weeds.

The Doppler effect—the familiar shift in the pitch of the sound of an automobile engine as it passes a stationary listener—also can be exploited to measure the speed of a vessel or an aircraft. Such an effect can be accurately measured in either sound waves or electromagnetic waves emitted from a moving craft and reflected from a fixed object such as a nearby cliff or the ground below.

S.S.D. Jones Tom S. Logsdon

Dead reckoning

Correction for drift

Starting from a known point, the mariner with a compass could draw a line on the chart to represent a vessel’s course, then mark off the distance given by the log. The calculation of a new position was known as dead reckoning. In addition to errors in the compass and in the log, dead reckoning suffered from errors due to the drift of the water. When ocean currents were first marked on charts of the open sea and when tidal streams appeared on coastal charts, navigators could make allowance for drift. Fortunately, the currents were seldom fast and, on long voyages, often tended to cancel each other out.

The situation in the air, however, was quite different. Early airplanes flew at speeds of about 100 knots, and the air that supported them was blown over the ground by the wind at up to 40 knots. It was therefore necessary to determine the velocity of the aircraft through the air and the velocity of the air over the ground in order to find the true velocity of the aircraft with respect to the ground. This was achieved by the triangle of velocities as shown in the figure. A line was drawn to show the direction in which the aircraft was heading, the length of the line representing the distance that the aircraft would travel through still air in one hour—in other words, the true airspeed. Such a velocity line represents a vector, a quantity that embodies both magnitude and direction. From the end of this velocity vector a second velocity vector was drawn in the direction toward which the wind was blowing, its length being proportional to the wind speed. A third vector drawn from the starting point of the first vector to the end of the second vector showed the path that the aircraft was following over the ground, the length of this vector representing the true ground speed. Stated mathematically, the true ground speed was the vector sum of the craft’s air velocity and the wind velocity.

The angle between the heading of the aircraft and its track along the ground was known as the drift angle because it resulted from the drifting effect of the wind. Early aircraft were fitted with drift sights through which the aviator visually aligned a grid with the moving ground below and so determined the drift. The plotting of velocity vectors and their sums was simplified by using graphic instruments called computers before that term was appropriated for much more complex devices.

Paradoxically, higher aircraft speeds failed to eliminate the problem of wind drift, because jet aircraft fly higher as well as faster and, above 20,000 feet (6,100 metres), very narrow belts of wind—known as jet streams, which travel at speeds of 100 or 200 knots—occur under certain meteorological conditions.

Sea navigators did not follow the practice of air navigators and allow for ocean currents and tidal drifts in their initial calculations. Dead reckoning, long established as a navigational technique, continued to be used; an estimate for ocean current or tidal drift was added afterward. This practice continues today. When using dead reckoning, the navigator can sometimes find a position that can be checked by a landmark. On the other hand, the errors that are inherent in dead reckoning accumulate; when a position has been checked, the reckoning is therefore generally restarted from that position. This process is called reinitialization.

Dead reckoning enables the navigator to plot not only where the craft is but also where it will be at any future time, provided the planned course and speed are maintained. It also makes it possible for the navigator to plan the journey in its entirety, including the time of arrival at the destination. Planning is a part of all navigation; the preparation of a complete flight plan is mandatory before taking off in a civil aircraft. Space navigation is based even more completely on flight planning, and the time of landing is calculated to within minutes many weeks before liftoff.