Table of Contents
References & Edit History Related Topics
print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

A simple lens produces a very imperfect image, which is usually blurred away from the centre. The image may have colour fringes around object outlines, and straight lines may be distorted. Such defects, called aberrations, can be eliminated—and even then not completely—only by replacing the single lens element by a group of elements of appropriate shape and separation. Aberrations arising from some of the lens elements then counteract opposite aberrations produced by other elements. The larger the maximum aperture, the greater the angle of coverage, and the higher the degree of correction aimed at, the more complex camera lenses become. Lens design for relative freedom from aberrations involves advanced computer programming to calculate the geometric parameters of every lens element. Some aberrations can also be corrected by making one or more of the surfaces of a lens system aspheric; i.e., with the variable curvature of a paraboloid or other surface rather than the constant curvature of a spherical one.

Lenses usually consist of optical glass. Transparent plastics also have come into use, especially as they can be molded into elements with aspheric surfaces. They are, however, more sensitive to mechanical damage.

Aberrations

There are a number of lens aberrations, each with its own characteristics. Chromatic aberration is present when the lens forms imagesby different-coloured light in different planes and at different scales. Colour-corrected lenses largely eliminate these faults. Spherical aberration is present when the outer parts of a lens do not bring light rays into the same focus as the central part. Images formed by the lens at large apertures are therefore unsharp but get sharper at smaller apertures. Curvature of field is present when the sharpest image is formed not on a flat plane but on a curved surface. Astigmatism occurs when the lens fails to focus image lines running in different directions in the same plane; in a picture of a rail fence, for instance, the vertical posts are sharp at a focus setting different from the horizontal rails. Another aberration, called coma, makes image points near the edges of the film appear as irregular, unsharp shapes. Distortion is present when straight lines running parallel with the picture edges appear to bow outward (barrel distortion) or inward (pincushion distortion).

Resolving power and contrast-transfer function

One way of testing lens performance is to observe the image it forms of patterns of increasingly closely spaced black lines separated by white spaces of line width. The closest spacing still recognizable in the image gives a resolving power value, expressed in line pairs (i.e., black line plus white space) per millimetre. Photographs of such line patterns, or test targets, show the resolving power of the lens and film combination. For example, a resolution of 80–100 line pairs per millimetre on a fine-grain film represents very good performance for a normal miniature camera lens.

The visual sharpness of an image depends also on its contrast. Opticians, therefore, often plot the contrast with which the image is reproduced against the line spacing of that image. The resulting contrast-transfer curve, or function, gives a more reliable indication of the lens performance under practical picture-taking conditions.

Special lens types

Apart from general-purpose camera lenses of various focal lengths, there are lenses of special characteristics or design.

Telephoto lenses

Long-focus lenses are bulky, because they comprise not only the lens itself but also a mount or tube to hold it at the appropriate focal distance from the film. Telephoto lenses are more compact; their combinations of lens groups make the back focus (the distance from the rear lens element to the film) as well as the length of the whole lens appreciably shorter than the focal length. Strictly, the term telephoto applies only to a lens of this optically reduced length; in practice long-focus lenses of all types tend to be called indiscriminately telephoto or “tele” lenses.

If a camera lens is interchangeable, an accessory teleconverter lens group can be positioned between the prime lens and the camera. This turns a normal lens into an even more compact telephoto system, which is less costly than a telephoto lens but which reduces the speed of the prime lens and usually impairs sharpness performance.

Wide-angle and retrofocus lenses

Short-focus, wide-angle lenses are usually mounted near the film. Single-lens reflex cameras need a certain minimum lens-to-film distance to accommodate the swinging mirror. Wide-angle (and sometimes normal-focus) lenses for such cameras therefore use retrofocus designs. In these the back focus is appreciably longer than the focal length. Both a telephoto and a retrofocus lens must be specially designed for its particular use to ensure optimum image performance.

Fish-eye lenses

For image angles greater than 110°, it becomes difficult to bring the lens close enough to the film to allow the rays between the lens and film to diverge sufficiently. The fish-eye lens overcomes this difficulty by making the rays diverge less behind the lens than they do in front. The resulting image shows appreciable distortion, with image details near the edges and corners progressively compressed. Fish-eye lenses usually cover angles between 140° and 210° and are used for unusual wide-angle effects where the distortion becomes a deliberate pictorial element. They also have certain scientific applications, for instance, to cover a horizon-to-horizon view of the sky in recording cloud formations.

Mirror lenses

Images can also be formed by light reflected from curved mirrors. This method, long used in astronomical telescopes, is applied to long-focus lens systems of short overall length by folding the light path back onto itself. A mirror lens or catadioptric system has no chromatic aberrations. Other aberrations are corrected by incorporating one or more appropriate lens elements. The arrangement of the system, with a central opening in the primary mirror, makes stopping down with a customary diaphragm difficult, and neutral-density filters are used to control light transmission.

Variable-focus lenses

In variable-focus lenses the focal length can be varied by movement of some of the elements or groups within the lens system. One lens can thus replace a range of interchangeable lenses.

The variable-focus, or zoom, lens was originally developed for motion-picture photography, in which adjustment of the focal length during a shot produced a zooming-in or zooming-out effect (hence the name). It is now widely used in single-lens reflex cameras where the reflex finder permits accurate continuous assessment of image coverage. In a true zoom lens the image changes in scale but not in sharpness during zooming; some varifocal lenses, however, need refocusing at different focal lengths. Due to correction requirements over a range of focal lengths, zoom lenses are complex systems containing from 12 to 20 elements. Zoom lenses for still cameras have focal-length ratios from 2:1 to 4:1 or more (e.g., 35–135 mm for a 35-mm reflex).

Lens-changing systems

Miniature and roll-film cameras hold interchangeable lenses in screw or quick-change bayonet mounts. In a focal-plane shutter camera the usable range of focal lengths is practically unlimited. In cameras with leaf shutters, either the lens is mounted in front of the shutter or the lens is changed with the shutter. Some designs use convertible lenses with the rear components built into the camera together with the shutter; interchangeable front groups then provide different focal lengths in combination with the fixed rear group. View-camera lenses—usually with their own shutters—are mounted on lens boards that clip into and out of the front camera standard.

Afocal attachments provide the effect of alternative focal lengths with a fixed camera lens. They are magnifying or reducing telescopes without a focal length (hence afocal), yielding a virtual image that the camera lens projects onto the film. Their designated magnification factor indicates the effect on the image scale; e.g., a 1.5× tele attachment magnifies the image on the film 11/2 times, while a 0.7× wide-angle attachment reduces the image scale to 0.7 times that of the prime camera lens.

Lens coating

When light passes from one optical medium to another (especially from air to glass and vice versa in a lens), about 4 to 8 percent of it is lost by reflection at the interface. This light loss builds up appreciably in complex multielement lenses. Some of the reflected light still reaches the film as ghost images or light spots or as general contrast-reducing scattered light.

To reduce such losses, the air-to-glass surfaces of modern lenses typically carry a microscopically thin coating of metallic fluorides. The coating eliminates most reflected rays. Complete elimination can occur only for light of one wavelength if the coating thickness and refractive index are exactly right. In practice a coated lens surface reflects about 0.5 percent of incident white light—1/10 of the light lost by an uncoated lens. Multiple coatings can reduce reflections over a wider wavelength range.