Extraction and refining

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites

TiCl4

The production of titanium metal accounts for only 5 percent of annual titanium mineral consumption; the rest goes to the titanium pigment industry. Pigments are produced using either a sulfate process or a more environmentally acceptable carbo-chlorination process (described below) that converts TiO2 into TiCl4. The latter process also supplies the TiCl4 necessary for the production of titanium metal.

Environmental and economic constraints dictate that the ore feed stocks converted by carbo-chlorination processes now in use contain greater than 90 percent TiO2. Only natural rutile meets this requirement, but ilmenite can be upgraded through combinations of pyrometallurgical and hydrometallurgical techniques to produce a synthetic rutile of 90 to 93 percent TiO2. In addition, titaniferous magnetite ores can be smelted to produce pig iron and titanium-rich slags. Rutile, leucoxene, synthetic rutile, and slag can then be mixed to provide a feed stock of more than 90 percent TiO2 for the chlorination process.

In the first step of this process, the oxide ores are reacted with chlorine in a fluidized bed of petroleum coke. Oxygen combines with carbon (C) in the coke to produce carbon monoxide (CO) and carbon dioxide (CO2), while the titanium and chlorine react to form a gaseous TiCl4, as in the following reaction:Chemical equation.

(The X and Y represent variable quantities whose ratio depends on the reaction temperature, which varies between 850 and 1,000 °C [1,550 and 1,800 °F].) The raw TiCl4 is cleaned of fine particles of entrained coke and titanium ore, and then it is liquified and passed through a distillation column to remove volatile impurities of both high and low boiling points. Vanadium oxychloride, an impurity with a boiling point similar to TiCl4, is stripped from the product stream by reaction with mineral oil. The TiCl4 is then redistilled to remove other impurities in a reflux distillation column. This process produces TiCl4 of a purity exceeding 99.9 percent. Since any contaminants in the TiCl4 would later be reduced along with the titanium metal, high-quality TiCl4 must be produced to achieve high-quality metal.

Titanium sponge

In the production of titanium pigments, the TiCl4 would be reoxidized to TiO2, but, in the production of titanium metal, it is reduced with either sodium (Na) in the Hunter process or with magnesium (Mg) in the Kroll process:Chemical equations.

These reactions take place in large, sealed steel vessels at approximately 800 to 1,000 °C (1,450 to 1,800 °F) in an inert argon atmosphere to avoid contamination of the final product by air or moisture. Both processes produce titanium in the form of a highly porous material called sponge, with the salts NaCl or MgCl2 entrapped in the pores. The sponge is crushed, and the metal and salts are separated by either a dilute acid leach or by high-temperature vacuum distillation. The salts are recycled through electrolytic cells to produce sodium or magnesium for reuse in metal reduction and chlorine for reuse in chlorination of the ore.

A different process that offers hope for an improved and simplified method of producing titanium metal is the direct electrowinning of titanium from TiCl4 in fused chloride salt baths. In this case, titanium sponge collects on a steel cathode, and chlorine gas is given off at the carbon anode. The required use in this process of high-melting-point salts, combined with the need for maintaining an inert environment, present major technical and economical hurdles that have to be overcome in order to achieve commercial status.

Titanium ingot

The conversion of purified titanium sponge to a form useful for structural purposes involves several steps. Consolidation into titanium ingot is performed in a vacuum or argon environment by the consumable-electrode arc-melting process. Sponge, alloying elements, and in some cases recycled scrap are first mechanically compacted and then welded into a long, cylindrical electrode. The electrode is melted vertically into a water-cooled copper crucible by passing an electric current through it. To ensure uniform distribution of alloying elements, this primary ingot is remelted at least once in a similar manner. Ingots weigh between 4 and 10 tons and are up to 1,050 millimetres (42 inches) in diameter.

Cold-hearth melting is an alternate consolidation process that is conducted inside an argon or vacuum chamber containing a water-cooled, horizontal copper crucible. Heating is accomplished by multiple electron-beam or by argon/helium plasma torches. The molten metal flows in a horizontal path over the lip of the hearth into a suitably shaped, water-cooled copper mold. The cold-hearth process is well suited to separating high-density contaminants, which settle to the bottom of the hearth. For this reason, it is used primarily to recycle titanium scrap, which can contain carbide tool bits left over from machining operations.

Consolidated ingots are processed into mill products such as bar, billet, wire, tubing, plate, and sheet by traditional steel facilities.