conversion, in syllogistic, or traditional, logic, interchanging the subject and predicate of a categorical proposition (q.v.), or statement. Conversion yields an equivalent proposition (and is hence a valid inference) in general only with so-called E and I propositions (universal negatives and particular affirmatives). For example, the converse of the E proposition “No men are immortal” is “No immortals are men” and that of the I proposition “Some man is mortal” is “Some mortal is man.”

In mathematics the term converse is used for the proposition obtained by the transformation of AB implies C into AC implies B, rendered symbolically as ABC into ACB. This operation may in some instances be reduced to the simple converse of an A proposition (universal affirmative) in the sense of traditional logic—for example: “Every equilateral triangle is equiangular,” and, conversely, “Every equiangular triangle is equilateral.” But such a reduction often becomes either impossible or very artificial. In this sense of conversion, the passage from a proposition to its converse is not, in general, a valid inference; and though often a mathematical proposition and its converse may both hold, separate proofs must be given for each case.

obversion, in syllogistic, or traditional, logic, transformation of a categorical proposition (q.v.), or statement, into a new proposition in which (1) the subject term is unchanged, (2) the predicate is replaced by its contradictory, and (3) the quality of the proposition is changed from affirmative to negative or vice versa. Thus the obverse of “Every man is mortal” is “No man is immortal.” Because the obverse of any categorical proposition is logically equivalent to it, obversion is a form of immediate inference. See also conversion.