- Related Topics:
- logic
Only fragments of the work of these thinkers are relevant to what is now considered logic. The systematic study of logic seems to have been undertaken first by Aristotle. Although Plato used dialectic as both a method of reasoning and a means of philosophical training, Aristotle established a system of rules and strategies for such reasoning. At the end of his Sophistic Refutations, he acknowledges the novelty of his enterprise. In most cases, he says, discoveries rely on previous labours by others. But then he adds:
Of the present inquiry, on the other hand, it was not the case that part of the work had been thoroughly done before, while part had not. Nothing existed at all….[O]n the subject of deduction we had absolutely nothing else of an earlier date to mention, but were kept at work for a long time in experimental researches.
(From The Complete Works of Aristotle: The Revised Oxford Translation, ed. Jonathan Barnes, 1984, by permission of Oxford University Press.)
Aristotle’s logical writings comprise six works, known collectively as the Organon (“Tool”). The significance of the name is that logic, for Aristotle, was not one of the theoretical sciences. These were physics, mathematics, and metaphysics. Instead, logic was a tool used by all the sciences. (To say that logic is not a science in this sense is in no way to deny it is a rigorous discipline. The notion of a science was a very special one for Aristotle, most fully developed in his Posterior Analytics.)
Aristotle’s logical works, in their traditional but not chronological order, are:
- Categories, which discusses Aristotle’s 10 basic kinds of entities: substance, quantity, quality, relation, place, time, position, state, action, and passion. Although the Categories is always included in the Organon, it has little to do with logic in the modern sense.
- De interpretatione (On Interpretation), which includes a statement of Aristotle’s semantics, along with a study of the structure of certain basic kinds of propositions and their interrelations.
- Prior Analytics (two books), containing the theory of syllogistic (described below).
- Posterior Analytics (two books), presenting Aristotle’s theory of “scientific demonstration” in his special sense. This is Aristotle’s account of the philosophy of science or scientific methodology.
- Topics (eight books), an early work, which contains a study of nondemonstrative reasoning. It is a miscellany of how to conduct a good argument.
- Sophistic Refutations, a discussion of various kinds of fallacies. It was originally intended as a ninth book of the Topics.
The last two of these works present Aristotle’s theory of interrogative techniques as a universal method of knowledge seeking. The practice of such techniques in Aristotle’s day was actually competitive, and Aristotle was especially interested in strategies that could be used to “win” such “games.” Naturally, the ability to predict the “answer” that a certain line of questioning would yield represented an important advantage in such competitions. Aristotle noticed that in some cases the answer is completely predictable—viz., when it is (in modern terminology) a logical consequence of earlier answers. Thus, he was led from the study of interrogative techniques to the study of the subject matter of logic in the narrow sense—that is, of relations of logical consequence. These relations are the subject matter of the four other books of the Organon. Aristotle nevertheless continued to conceive of logical reasoning as being conducted within an interrogative framework.
This background helps to explain why for Aristotle logical inferences are psychologically necessary. According to him, when the premises of an inference are such as to “form a single opinion,” “the soul must…affirm the conclusion.” The mind of the reasoner, in other words, cannot help but adopt the conclusion of the argument. This conception distinguishes Aristotle’s logic sharply from modern logic, in which rules of inference are thought of as permitting the reasoner to draw a certain conclusion but not as psychologically compelling him to do so.
Aristotle’s logic was a term logic, in the following sense. Consider the schema: “If every β is an α and every γ is a β, then every γ is an α.” The “α,” “β,” and “γ” are variables—i.e., placeholders. Any argument that fits this pattern is a valid syllogism and, in fact, a syllogism in the form known as Barbara (on this terminology, see below Syllogisms).
The variables here serve as placeholders for terms or names. Thus, replacing “α” by “substance,” “β” by “animal,” and “γ” by “dog” in the schema yields: “If every animal is a substance and every dog is an animal, then every dog is a substance,” a syllogism in Barbara. Aristotle’s logic was a term logic in the sense that it focused on logical relations between such terms in valid inferences.
Aristotle was the first logician to use variables. This innovation was tremendously important, since without them it would have been impossible for him to reach the level of generality and abstraction that he did.
Categorical forms
Most of Aristotle’s logic was concerned with certain kinds of propositions that can be analyzed as consisting of (1) usually a quantifier (“every,” “some,” or the universal negative quantifier “no”), (2) a subject, (3) a copula, (4) perhaps a negation (“not”), (5) a predicate. Propositions analyzable in this way were later called categorical propositions and fall into one or another of the following forms:
- Universal affirmative: “Every β is an α.”
- Universal negative: “Every β is not an α,” or equivalently “No β is an α.”
- Particular affirmative: “Some β is an α.”
- Particular negative: “Some β is not an α.”
- Indefinite affirmative: “β is an α.”
- Indefinite negative: “β is not an α.”
- Singular affirmative: “x is an α,” where “x” refers to only one individual (e.g., “Socrates is an animal”).
- Singular negative: “x is not an α,” with “x” as before.
Sometimes, and very often in the Prior Analytics, Aristotle adopted alternative but equivalent formulations. Instead of saying, for example, “Every β is an α,” he would say, “α belongs to every β” or “α is predicated of every β.”
In syllogistic, singular propositions (affirmative or negative) were generally ignored, and indefinite affirmatives and negatives were treated as equivalent to the corresponding particular affirmatives and negatives. In the Middle Ages, propositions of types 1–4 were said to be of forms A, E, I, and O, respectively. This notation will be used below.
In the De interpretatione Aristotle discussed ways in which affirmative and negative propositions with the same subjects and predicates can be opposed to one another. He observed that when two such propositions are related as forms A and E, they cannot be true together but can be false together. Such pairs Aristotle called contraries. When the two propositions are related as forms A and O or as forms E and I or as affirmative and negative singular propositions, then it must be that one is true and the other false. These Aristotle called contradictories. He had no special term for pairs related as forms I and O, although they were later called subcontraries. Subcontraries cannot be false together, although, as Aristotle remarked, they may be true together. The same holds for indefinite affirmatives and negatives, construed as equivalent to the corresponding particular forms. Note that if a universal proposition (affirmative or negative) is true, its contradictory is false, and so the subcontrary of that contradictory is true. Thus, propositions of form A imply the corresponding propositions of form I, and those of form E imply those of form O. These last relations were later called subalternation, and the particular propositions (affirmative or negative) were said to be subalternate to the corresponding universal propositions.
Near the beginning of the Prior Analytics, Aristotle formulated several rules later known collectively as the theory of conversion. To “convert” a proposition in this sense is to interchange its subject and predicate. Aristotle observed that propositions of forms E and I can be validly converted in this way: if no β is an α, then so too no α is a β, and if some β is an α, then so too some α is a β. In later terminology, such propositions were said to be converted “simply” (simpliciter). But propositions of form A cannot be converted in this way; if every β is an α, it does not follow that every α is a β. It does follow, however, that some α is a β. Such propositions, which can be converted provided that not only are their subjects and predicates interchanged but also the universal quantifier is weakened to a particular quantifier “some,” were later said to be converted “accidentally” (per accidens). Propositions of form O cannot be converted at all; from the fact that some animal is not a dog, it does not follow that some dog is not an animal. Aristotle used these laws of conversion in later chapters of the Prior Analytics to reduce other syllogisms to syllogisms in the first figure, as described below.