Table of Contents
References & Edit History Related Topics
print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Printing inks contain three components: the vehicle, the colouring ingredients, and the additives. The vehicle, responsible for transferring the colouring ingredients from the ink fountain to the typeform, can be either a vegetable base (linseed, rosin, or wood oils), which dries by penetration and oxidation and at the same time ensures fixation, or a solvent base derived from kerosene, in which case drying takes place by evaporation. The colouring ingredients come in several forms: pigments, which are fine, solid particles manufactured from chemicals, generally insoluble in water and only slightly soluble in solvents; agents made from chemicals but soluble both in water and in solvents; and lacquers, obtained by fixing a colouring agent on powdered aluminum. The additives stabilize the mixture and give the ink additional desirable characteristics. The nature and proportions of the ingredients vary according to the printing process to be used and to the material to be printed. The proportions must be checked and sometimes modified during printing.

Letterpress and offset use greasy inks. For printing on sheet-fed presses, thick greasy inks are used in which the vehicle is generally made of vegetable oils with the addition of hard natural or synthetic resins dispersed in mineral oils. Roll-fed rotaries use fluid greasy inks in which the vehicle is made up of heavy mineral oils.

The colour black is generally obtained from an organic pigment, carbon black, derived from the incomplete combustion of oils or of natural gas. Coloured pigments are inorganic compounds of chromium (yellow, green, and orange), molybdenum (orange), cadmium (red and yellow), and iron (blue).

Inks for offset are more highly coloured than those used in letterpress, because they must be transferred to the blanket before they reach the paper. Furthermore, the pigments must resist being picked up by the water from the dampening system.

Inks with various special qualities exist for both letterpress and offset. In high-gloss inks, the vehicle is not homogeneous, as with ordinary inks, but heterogeneous, based on synthetic resins dissolved in a solvent, with lead and cobalt additives. This ink glazes as it dries. When printing several colours, the whole series of operations must be finished before the ink has time to dry so that the inks can attach themselves to the surface.

Quick-setting inks utilize a vehicle that also has a base of resins dissolved in a quick-drying solvent.

Heat-set inks require the application of heat to facilitate both the oxidation process and the evaporation of the solvent, as well as the penetration of certain elements that had rendered the ink more fluid. Cold-set inks are hardened by chilling after printing, having been kept fluid by heat until they were applied to the typeform.

Moisture-set inks become fixed when they are applied directly to damp paper or upon exposure to a water-spray after they are applied to dry paper. In such inks, which are used more in the United States than they are in Europe, the vehicle is a solvent, soluble in water, that, on contact, penetrates the paper, leaving the pigment on its surface. Odourless moisture-set inks are used for printing food packaging.

Among other special-characteristic inks are metallic inks containing powdered copper, bronze, aluminum, or gold mixed with the pigment; magnetic inks, containing a powdered magnetized iron mixed with the pigment for “recognizing” the shape of printed characters as they pass before electronic reading equipment; and fluorescent inks.

Rotogravure uses fluid inks in which the colouring agent, fixed on a natural or synthetic resin, is integrated in a fluid solvent to which, just before printing, a second, extremely volatile solvent is added.

Flexography also uses fluid inks whose pigments or colouring agents are dissolved in pure alcohol, in alcohol solutions, or in water.

Serigraphy uses inks of extremely varied consistency, depending on the surface to which they are to be applied; some are little different from ordinary paint, except that their composition must not be such that rapid drying would clog the mesh of the screen.

Robert Lechêne