Typesetter casting aligned characters
The operation of the Monotype typesetter, which casts individual aligned characters, is based on a system of measuring the width of characters, called the set. In each font, letters and symbols have sizes determined in units of set, from five units for the narrowest, such as the “i” or the “l,” to 18 units for the largest, such as the “W” or the “M.”
The Monotype keyboard, separate from the caster, consists, on the standard model, of 274 keys, 30 of which, in two rows numbered from 1 to 15, are called justifying keys. Typing out the text results in the perforation, by an automatic punch, of one or two holes, each letter or symbol having its own pattern, in the width of a paper tape that allows 31 possible arrangements. An automatic calculator adds the widths of the letters and symbols typed out. Moving his forefinger across a scale that he has before him, the operator knows when the end of a line is near. Once he has finished a line, he places his other forefinger on the justifying drum, which indicates which two justifying keys he must now press. This move results in the perforation of one or two holes whose position indicates the quotient of the number of units lacking for the line to be completed by the number of spaces between the words of this line, plus a third hole in a position specifically fixed for the justification process.
The typesetter is composed of an electric melting pot containing molten alloy situated under a mold in the shape of a vertical chimney, the internal dimensions of which can vary according to the measurement in units of set of the characters or spaces to be cast.
The matrices are in the form of small bronze cubic blocks measuring five millimeters (0.2 inch) square, arranged in a steel frame nine centimeters (3.5 inches) square containing 15 rows of 15, enough for five complete alphabets, typically uppercase and lowercase in roman, italic, and boldface, and small capitals, as well as double or triple letters, numbers, and punctuation marks. Each row includes only matrices of letters and symbols of the same unit of set, from the smallest (five units) in the first row to the largest (18 units) in the back row.
The frame can slide horizontally in either direction to place any matrix from any row above the opening to the mold.
The process of setting and casting type on the Monotype is as follows: the roll of perforated paper tape is placed in the pneumatic tower of the typesetter—a row of 31 pipes distributing compressed air. As it unrolls, the tape prevents the compressed air from entering all pipes except those corresponding to the perforations.
The tape unrolls in the direction opposite to that in which it was rolled up—that is, in the opposite order to the way it was typed, the last line appearing first and the justifying perforations being inserted into the pneumatic tower before those for the letters and symbols. The compressed air that the perforations allow to pass into three (or two) of the pipes causes pieces of metal (justifying quoins) to fall into position in such a way as to control the internal measurement of the mold each time that the spaces between the words of the next line are to be cast.
The perforations for each letter or symbol allow the compressed air to pass into two (or only one) of the pipes connected to two blocks, each of which also contains a series of graded pins. Compressed air raises a pin in each block and halts the movement of the matrix frame in either of its sideways movements. In this way the matrix’s row and the matrix’s place in its row are selected. Selecting the row is the same as selecting a measurement given in units of set. Positioning the row is automatically linked to setting a piece of metal (the set quoin) whose position regulates the dimensions of the mold for casting the letter or symbol.
For the casting, a centering device places the selected matrix precisely against the opening of the mold, and a plunger in the melting pot forces the alloy up to cast the character or the space (that is, the unengraved matrix).
The composed line emerges from the machine completely assembled and justified and is placed in a galley.
The Monotype can cast type ranging in body size from five to 24 points (with a special mold for each). The addition of a speed-reducing device enables it to cast in 48 points. The maximum width of lines assembled is 60 picas.
In the early 1970s Monotype models could be equipped with a frame carrying 15 rows of 17 matrices (255) or 16 rows of 17 (272), with six or seven complete alphabets. The keyboard then has 310 keys.
A special model of the keyboard permits simultaneous perforation of two tapes for composing the same text in identical or different kinds of type and lengths of line.
The advantages of the Monotype system are the quality of its composition and the ease with which corrections can be made without having to reset the whole line. It is not well suited to newspaper printing because of the difficulty of handling lines of movable type and because, since typecasting begins with the end of the tape, composition must wait until all the type has been cast.
Automatic composition (perforated tape)
The Teletypesetter (TTS) system extends to slugcasting machines the principle of separation of function originally characteristic of the Monotype: it enables Linotype or Intertype machines to be controlled by a perforated tape produced on a separate keyboard, even situated in a different city, since the combination of the perforations on the tape can be sent telegraphically.
The Teletypesetter tape is six-channeled; that is, it contains six possible positions for perforations across its width. This allows 64 different combinations of from one to six perforations.
This limited capacity, less than the number of keys on the keyboard of the typesetter, is corrected by an arrangement whereby each combination of perforations may have two different uses (for example, the uppercase and the lowercase of the same letter) according to whether it follows one or other of two special signals (themselves represented by combinations of perforations) that control passage of one or other of these uses.
The keyboard for preparing the Teletypesetter tape looks like a typewriter with, in addition to the usual 44 keys and the space bar, 20 special keys. Striking each key establishes contact with the electric circuit or circuits that operate the perforators and at the same time acts on a calculating mechanism: a needle moving across a screen warns the operator of the end of each line.
Usually, as the tape is perforated the text is also typed out on a sheet of paper, which allows the work to be checked, reread, and corrected. For use with a Teletypesetter, the typesetting machine is equipped with a mechanism that translates the tape. In this mechanism the tape passes under six sensors that register electric contacts as the perforations pass. In accordance with the combination of electric contacts thus established, relays control the action of the keys or of the bar that causes the spacebands to drop and, at the end of each line, the starting of the casting cycle.
The most recent typesetters specially designed for use with the Teletypesetter offer such technical refinements as the elimination of the composing stick and immediate dispatch of the line to the elevator, simplifying the path taken by the matrices; and electromagnetic, rather than mechanical coupling, which speeds the starting up of the casting cycle.
Programmed composition (prepared by computer)
The use of a computer eliminates manual intervention in preparing the perforated tape, in assessing the length of the lines, and even in deciding how to end them; i.e., whether by completing or dividing a word.
Normally, the operator types out a continuous tape called idiot tape in the United States (kilometre tape in France) without concern for the length or division of lines. This band is inserted into the computer’s input device, a tape scanner, which operates by means of either electric sensors or photoelectric cells and converts letters, signs, and orders into combinations of electric impulses. The computer semi-automatically or automatically processes this raw information in accordance with its programmed instructions and immediately communicates the result to an electromagnetic perforator, the output device, that produces a second tape, like the first but that also bears, in the proper places, perforations ordering the ends of lines.
A general program establishes the operation of the computer in its application to the work of composition. Individual programs adapt it to the machinery of the company concerned (models of typesetters, available magazines of matrices) and to the kind of work carried out (usual length of line, method of indenting paragraphs, etc). Finally, special instructions punched on the tape by the operator at the same time as the text can interrupt the execution of the programs registered in the computer with directions valid for this text alone, in its entirety or in certain parts: choice of typeface among those available, transition from one kind of typeface to another available for the same typesetter, length of line and changes in the length, alignment to right or left, squaring of lines, indentations for ornamental capitals, spaces for borders or illustrations, and other details.
Having identified the combinations of the perforations on the tape and separately retained the service signals addressed directly to it, the computer proceeds to estimate the amount of the space occupied in a line by its letters and symbols, referring to instructions registered in its memory regarding each. In the same way, it determines a justification zone in which a division in the line is necessary and possible, the minimum and maximum limits of this zone being fixed by the limits of expansion of the spacebands on the typesetter.
If the end of a whole word comes within the justification zone, the computer itself signals the end of a line after this word and suppresses the space that would normally follow it. Otherwise, the last word must be divided. The process is said to be semiautomatic if a special operator, seated at a keyboard linked to the computer, must intervene to decide where to place the division in the word submitted to him on, for example, a cathode-ray viewing screen. The process is automatic if the computer is designed and programmed to make the decision itself; the operation then is carried out by starting a subprogram in which all the divisions possible in the word considered are listed (after a prefix, between syllables). This list is tested against prohibited divisions (according to the rules of etymology, phonetics, typography) stored in the rapid-access memory of the computer. From among the positions that are not eliminated during this test, the computer chooses the one situated nearest the end of the word. It automatically inserts the signal for the hyphen and orders the end of the line.
The computer can also carry out the correction of mistakes before composition. Various methods are possible, of which two will be described briefly. In one, the perforation of the justified tape delivered from the computer includes the introduction at the beginning of each line of a numbered signal and is accompanied by a proofing copy of the text with a corresponding reference number for each line. When the mistakes have been corrected on the proofing copy, an operator prepares another, much shorter correction tape, which consists of the corrections preceded by the reference to the line on which they occur. The justified tape and the correction tape are jointly introduced into a double reader, the mixer, which determines anew the length of the line and where the division should occur, as well as for such succeeding lines as need to be modified, before producing a final tape.
In the second method, the proofing copy can be typed out or shown on a cathode-ray viewing screen with the lines numbered but without the tape. At a keyboard connected to the computer, an operator types out the corrections, preceded by their line reference. If a viewing screen is used, the text reappears immediately in its corrected form, and the output perforator immediately delivers a justified and corrected tape.
The computer is usually programmed to sort out and correct even mistakes or anomalies in typing, such as the presence of two consecutive spaces, in which case it cancels one. It can, if its capacity allows, receive a makeup program independent of the tape of the text; following the specifications of the layout (positioning and size of headings, text, and illustrations) coded in binary language, the computer itself introduces onto the perforated tape the special instructions concerning kinds of typeface, length of lines, changes in lines, etc.
Because of the quantity of information needed for composition, the six-channel Teletypesetter tape is being increasingly replaced by seven- and eight-channel tape.
Computer processing using a continuously typed tape can be applied equally well to the Monotype system. The programmed operation for dividing lines is in this case carried out by the automatic calculation of the width of the spaces between words and by the perforation, before the end-of-line signal, of a signal signifying the appropriate position of the justifying quoins. To enable the text to be read by the pneumatic tower of the typesetter, a converter transcribes the perforations from a narrow six-, seven-, or eight-channel conventionally perforated tape to the wide tape of the Monotype system.
The use of computers is now widespread in preparing photocomposition jobs, with programs adapted to the specifications. The computer’s output device can produce magnetic tape instead of perforated paper tape.
One intake device no longer reads perforated tape but is an optical mechanism for scanning a typewritten text. The Retina reader, for example, is a sort of artificial retina made up of a group of photosensitive units able to identify each letter typed by a special typewriter, using only three data: height, width, and gray value; that is, the surface area occupied by the outline of its design.
Cold type
Cold type is the expression used, particularly in the United States, to describe a simple and economic method of preparing text by machines resembling ordinary typewriters but capable of producing justified lines in type that varies in width according to the letter involved. Justification is achieved in several ways by different versions of the machine. In the IBM Multipoint, a first typing calculates the total measurement of the type pieces up to the beginning of the justification zone and causes a coded sign to appear. A button is set in position over the coded sign thus assigned to each line before a second, final typing is done. The position of this button determines the automatic adjustment of the spaces between the words to the amount needed to obtain justification.
In the Justowriter, the keyboard on which the uncoded, unjustified proofing copy is typed simultaneously perforates a paper tape with the code for the letters, as well as, for each line, the code for the amount of space between the words as indicated by a calculator. The tape then controls, on a second unit of the machine, the electric typing of the final justified copy.
In the IBM Multipoint with magnetic tapes, a magnetic tape produced at the keyboard is processed by a computer for justification and, if necessary, for corrections. The final tape delivered by the computer controls the action of an output unit, which carries out the final typing.
If the copy thus produced on paper is to be photographed to prepare printing plates by photogravure, cold type cannot be directly incorporated into photocomposition because of the intermediate operation.
Optype is a hybrid process that simultaneously carries out the operation of justifying a text typed directly in cold type and transmits it to photographic film. By means of optical distortion, each line is stretched to the exact length of line projected on the film. The same mechanism also enables the line to be magnified or reduced or set in italics.