Importance
- Also called:
- chondrichthian
- Related Topics:
- chimaera
- Cladoselachii
- elasmobranch
- Cladodontiformes
- Squaloraja
Economic uses of elasmobranchs
Sharks as food
The meat of sharks is marketed for food in all maritime countries. It may be prepared in various ways—fresh, salted, smoked, or pickled—offered in such forms as steaks, fillets, or flakes and under such misleading names as whitefish, grayfish, swordfish, sea bass, and halibut. The flesh is often rather strong tasting; however, this quality is one that can be removed by cleaning and washing and soaking the flesh in brine.
Since ancient times, Chinese people have used the fins of certain sharks and rays as the basis of an epicurean soup. To meet the demand for this product, they have imported fins from far distant countries. The fins are prepared for market by removing the skin and flesh, leaving only the gelatin-rich cartilaginous rays, which are dried before shipment.
Shark liver oil is used in various regions for tanning leather; for preserving wood; as a lubricant; as a folk medicine against rheumatism, burns, and coughs; as a general tonic; as a laxative; and as an ingredient of cosmetics. The liver of a basking shark (Cetorhinus maximus) yields 80 to 600 gallons (about 300 to 2,300 litres) of oil, which was used in lamps until petroleum products replaced animal oils for illumination. The discovery about 1940 that the liver of the soupfin shark (Galeorhinus galeus) of California is peculiarly rich in vitamin A led to the explosive development of a special fishery in California for this species. It also prompted a search in other parts of the world for sharks having livers of comparable potency. Within a few years, however, the economic bubble burst with the invention of a method for manufacturing synthetic vitamin A. The Australian school shark, which was used originally for vitamin A, is now caught for fish fillets.
Other shark products
The hard scales provide an abrasive surface to the skin of sharks and some rays, giving it a special value, as a leather called shagreen, for polishing hard wood. When heated and polished, shagreen is used for decorating ornaments and, in Japan, for covering sword hilts.
Shark leather is made in several countries, including the United States, from the skin of certain shark species after removal of the scales by a chemical process. A luxury product, much more durable than cowhide, shark leather is used for footwear, belts, wallets, and other accessories. The most suitable skins for leather are from tiger sharks (Galeocerdo cuvier), dusky sharks (Carcharhinus obscurus), sandbar sharks (C. plumbeus), blacktips (C. brevipina, C. tilstoni, and C. limbatus), sandtiger sharks (Carcharias taurus), and nurse sharks (Ginglymostoma cirratum, Nebrius ferrugineus, and Pseudognglymostoma brevicaudatum).
In Greenland, some Inuit make rope from strips of the skin of the sleeper shark (Somniosus microcephalus). Polynesians once added to the effectiveness of their war clubs with sharks’ teeth. Sharks’ teeth have some commercial value as curios. Traditionally the Maori of New Zealand prized the teeth of the mako shark (Isurus), which they wore as earrings.
Economic value of rays
About 126,000 short tons (roughly 114,000,000 kilograms) of rays are marketed for food in various countries about the world, principally in Europe and Asia. By-products in local demand are skins of scaleless species for drumheads; those of scaly species are used for shagreen. Livers are used for oil, fins for gelatin. People of many tropical regions—Polynesia, Oceania, Malaysia, Central America, and Africa—have used the spines of stingrays for such items as needles and awls, spear tips and daggers, and for the poison they contain. The entire tail of stingrays, complete with spines, has been used as a whip in various tropical areas.
The electric rays, or numbfish, have little commercial value. The ancient Greeks and Romans used the electric shock of Torpedo to relieve diseases of the spleen, chronic headaches, and gout. From the Greek word for electric ray, narke, comes the word narcotic. Today these fishes are worrisome to bathers who step on them and to fishers who may be shocked when hauling in their wet nets.
Danger to human life
Among the more than 400 known shark species, about 30 have been authoritatively implicated in unprovoked attacks on persons or boats; of these only about 15 species are considered dangerous, however. Hospital and other records attest to many attacks on bathers, divers, and people awash in the sea following sea or air disasters. There are also many documented cases of sharks attacking small boats. Many surviving victims have been able to identify the attacking animal as a shark; a few even reported the type of shark, such as a hammerhead (Sphyrna). In many instances, witnesses have seen the assailant clearly enough to determine the species. Fragments of teeth left in wounds of victims or in the planking of boats have often been large enough to provide ichthyologists with the means for precise identification; furthermore, there are cases where human-body fragments have been found in sharks caught, killed, and autopsied.
In 1958 the American Institute of Biological Sciences established a Shark Research Panel at the Smithsonian Institution and Cornell University to gather historical and current records of shark attacks throughout the world. For the 35 years from 1928 to 1962, inclusive, the panel listed 670 attacks on persons and 102 on boats. More recently, the International Shark Attack File (ISAF) documented over 1,600 unprovoked attacks between 1960 and 2007. Attacks occur most frequently throughout the year in the tropical zone between latitudes 21° N and 21° S; from mid-spring to mid-fall they extend as far north and south as the 42° parallels. For this reason, it was formerly believed that the most dangerous sharks lived in waters warmer than 21 °C (70 °F) and that the risk of attack was greatest in the tropics and in the summer months. It is now thought that this circumstance simply results from the fact that more people swim in warm water. It is known, for example, that the most dangerous shark—the great white shark, or man-eater (Carcharodon carcharias)—ranges into the cooler waters of both hemispheres. Two other dangerous species—the tiger shark (Galeocerdo cuvier) and the bull shark (Carcharhinus leucas)—occur primarily in the tropics.
Along the coasts of Australia, New Zealand, and South Africa and in other areas densely populated by sharks, public beaches have lookout towers, bells or sirens, and nets to protect bathers. Since 1937 Australia has used meshing offshore to catch the sharks. Gill nets suspended between buoys and anchors running parallel to the beach and beyond the breaker line have decreased the danger of attack. The nets enmesh sharks from any direction; although they touch neither the surface nor the bottom and are spaced well apart, they provide effective control. South Africa has used a similar protection system and has also conducted experiments with electrical barriers.
The shark species implicated in attacks on persons or boats are mostly large sharks with large cutting teeth. Size, however, is not a dependable criterion; some smaller sharks may bite or nip a bather, inflicting a minor wound. The largest species, the basking shark and the whale shark (Rhincodon typus), which grow to 12 and 18 metres (40 and 60 feet) respectively, subsist on minute planktonic organisms and on small schooling fishes. Although either might charge a boat if provoked, only two records of such occurrences have been reported, both in Scotland and both identified with the basking shark. More than 85 percent of all shark species are too small, too unsuitably toothed, or too sluggish or live at depths too great to be potentially dangerous. The most dangerous sharks include, in addition to the white shark, the hammerheads (Sphyrna), tiger (Galeocerdo), blue (Prionace), and requiem sharks (Carcharhinus).
Most stingrays live in shallow coastal waters. Some move with the tides to and from beaches, mud flats, or sand flats. Anyone wading in shallow water where they occur runs some risk of stepping on one and provoking an instant response: the ray lashes back its tail, inflicting an agonizingly painful wound that occasionally leads to fatal complications. Rays can be serious pests to shellfisheries, for they are extremely destructive to oyster and clam beds.
Natural history
Food habits
Sharks
All sharks are carnivorous and, with a few exceptions, have broad feeding preferences, governed largely by the size and availability of the prey. The recorded food of the tiger shark (Galeocerdo cuvier), for example, includes a wide variety of fishes (including other sharks, skates, and stingrays), sea turtles, birds, sea lions, crustaceans, squid, and even carrion such as dead dogs and garbage thrown from ships. Sleeper sharks (Somniosus), which occur mainly in polar and subpolar regions, are known to feed on fishes, small whales, squid, crabs, seals, and carrion from whaling stations. Many bottom-dwelling sharks, such as the smooth dogfishes (Triakis and Mustelus), take crabs, lobsters, and other crustaceans, as well as small fishes.
The three largest sharks, the whale shark (Rhincodon typus), the basking shark (Cetorhinus maximus), and the megamouth shark (Megachasma pelagios), resemble the baleen whales in feeding mode as well as in size. They feed exclusively or chiefly on minute passively drifting organisms (plankton). To remove these from the water and concentrate them, each of these species is equipped with a special straining apparatus analogous to baleen in whales. The basking shark and the megamouth shark have modified gill rakers, the whale shark elaborate spongy tissue supported by the gill arches. The whale shark also eats small, schooling fishes.
The saw sharks (Pristiophoridae) and sawfishes (Pristidae), though unrelated, both share a specialized mode of feeding that depends on the use of their long bladelike snout, or “saw.” Equipped with sharp teeth on its sides, the saw is slashed from side to side, impaling, stunning, or cutting the prey fish. Saw sharks and sawfishes, like most other rays, are bottom inhabitants.
Thresher sharks (Alopias) feed on open-water schooling fishes, such as mackerel, herring, and bonito, and on squid. The long upper lobe of the tail, which may be half the total length of the shark, is used to herd the fish (sometimes by flailing the water surface) into a concentrated mass convenient for feeding. Thresher sharks have also been observed to stun larger fish with a rapid strike of the tail.
Most sharks and rays do not school. Individuals are normally solitary and usually come together only to exploit food resources or to mate. During these encounters, some species may show specific dominance structures, usually based on size. Some species, however, will travel in large schools segregated by size, a habit that protects smaller individuals from being eaten by larger ones. Still other species form sex-segregated schools where males and females live in slightly different habitats or depths. When potential prey is discovered, sharks circle it, appearing seemingly out of nowhere and frequently approaching from below. Feeding behaviour is stimulated by increasing numbers and rapid swimming, when three or more sharks appear in the presence of food. Activity soon progresses from tight circling to rapid crisscross passes. Biting habits vary with feeding methods and dentition. Sharks with teeth adapted for shearing and sawing are aided in biting by body motions that include rotation of the whole body, twisting movements of the head, and rapid vibrations of the head. As the shark comes into position, the jaws are protruded, erecting and locking the teeth into position. The bite is extremely powerful; a mako shark (Isurus), when attacking a swordfish too large to be swallowed whole, may remove the prey’s tail with one bite. Under strong feeding stimuli, the sharks’ excitement may intensify into what is termed a feeding frenzy, possibly the result of stimulatory overload, in which not only the prey but also injured members of the feeding pack are devoured.

In most cases, sharks locate food by smell, which is well developed in nearly all species. Sharks also possess other important senses that allow them to find food, and the importance of each sense varies between species. Their lateral line system, a series of sensory pores along the side of the body for detecting vibrations, allows sharks to detect vibrations in the water. Their network of ampullae allows them to sense weak electrical signals given off by prey (see mechanoreception: Ampullary lateral line organs), and their eyes are often acute enough to discriminate the size, shape, and colour of their prey. The sum of these senses working together makes a well-integrated system for finding prey.
Rays
The majority of batoid fishes (members of the order Batoidei such as rays and allies) are bottom dwellers, preying on other animals on or near the seafloor. Guitarfishes (Rhynchobatidae and Rhinobatidae), butterfly rays (Gymnuridae), eagle rays (Mylobatidae), and cow-nosed rays (Rhinopteridae) feed on invertebrates, principally mollusks and crustaceans. Whip-tailed rays (Dasyatidae) use their broad pectoral fins to dig shellfish from sand or mud. Skates (Rajidae) lie on the bottom, often partially buried, and rise in pursuit of such active prey as herring. Skates trap their victims by swimming over and then settling upon them, a practice facilitated by their habit of hunting at night.
Electric rays (Torpedinidae) are characteristically bottom fishes of sluggish habits. They feed on invertebrates and fish, which may be stunned by shocks produced from the formidable electric organs. With their electricity and widely extensible jaws, these rays are capable of taking very active fishes, such as flounder, eel, salmon, and dogfish. Shallow-water electric rays have been observed to trap fishes by suddenly raising the front of the body disk while keeping the margins down, thereby forming a cavity into which the prey is drawn by the powerful inrush of water.
Most of the myliobatoid rays (seven recognized families of the suborder Myliobatoidei [order Myliobatiformes], which includes all the typical rays) swim gracefully, with undulations of the broad winglike pectoral fins. Some species, especially the eagle rays, frequently swim near the surface and even jump clear of the water, skimming a short distance through the air.
Manta, or devil, rays (Mobulidae) swim mostly at or near the surface, progressing by flapping motions of the pectoral fins. Even the largest often leap clear of the water. In feeding, a manta moves through masses of macroplankton or schools of small fish, turning slowly from side to side and using the prominent cephalic fins, which project forward on each side of the mouth, to funnel the prey into the broad mouth.
Chimaeras and ghost sharks (Chimaeridae) dwell near the bottom in coastal and deep waters, to depths of at least 2,500 metres (about 8,000 feet). They are active at night, feeding almost exclusively on small invertebrates and fishes.
Reproductive behaviour
Mature individuals of some species of sharks segregate by sex, coming together only during the mating season, when the males—at least those of the larger, more aggressive species—stop feeding. Segregation is a behavioral adaptation to protect the females. One principal courting activity used by the male to induce cooperation of the female in mating is the act of biting her and gripping her with his teeth. A male takes hold of a female in this way so that he can more easily insert a modified fin, called a clasper, into her cloaca. After mating, the sexes again separate. The pregnant females tend to keep apart from the other females of like size. As the time of parturition approaches, the pregnant females move to particular areas, which presumably have environmental properties especially suitable as nursery grounds. When giving birth to their young, they stop feeding, and, soon after parturition is completed, they depart.
Nursery areas vary with species. Some sharks—such as the bull shark (Carcharhinus leucas) and the sandbar shark (C. plumbeus)—use shallow waters of bays and estuaries; the silky shark (C. falciformis) uses the bottom far out on oceanic banks such as the Serrana Bank in the western Caribbean. The Atlantic spiny dogfish (Squalus acanthias) bears its young mostly during the winter, far out on the continental shelf of northeastern America, almost two years after mating.
A few skates that have been observed mating may be characteristic of other rays. The male seizes the female by biting the pectoral fin and presses his ventral surface against hers while inserting his clasper, or in some species both claspers, into her cloaca. Male skates have one to five rows of clawlike spines on the dorsal side of each pectoral fin. These are retractile in grooves of the skin and are used to hold the female during mating.
The eggs of skates in aquaria have been observed to be extruded in series, usually of two eggs at a time but sometimes one. Rest periods of one to five days occur between extrusions. A female of a European skate, Raja brachyura, laid 25 eggs over a 49-day period in the National Marine Aquarium, located in Plymouth, Eng.
Although the mating of chimaeroids has not been observed, it is generally presumed that the mode of copulation is similar to that of sharks and that the male’s frontal spine and anterior appendage of the pelvic fins are probably used in securing the female. Two eggs are laid simultaneously, one from each oviduct. They are often carried for a relatively long period before being laid, several hours or even days, each egg protruding from the female for the greater part of its length.