In all conservation of architecture, the first effective step is to decide and define what buildings or sites are worthy of protection. For most countries this has involved a systematic process of inventory and survey. In Great Britain, for example, the Royal Commission on Historical Monuments (RCHM) was set up in 1908, and the Civic Amenities Act of 1967 enabled local planning authorities to define special areas for “conservation and enhancement.” In France, the Commission des Secteurs Sauvegardés was set up in 1962 under André Malraux, minister for cultural affairs, to pursue an active program for public protection of historic areas. In the United States, the Historic American Buildings Survey was designed to assemble a national archive of historic American architecture.

Criteria for conservation are rarely well defined. Architectural merit clearly must rank highly—especially in the case of any building that authentically exemplifies its period. Historical associations, such as the birthplace of a famous person, are less easily rated. One pernicious effect of all selection is the way in which the most outstanding architectural example of any period, rather than a truly typical example, is what in the end is chosen to remain as a representation of a particular period of architecture. Another is that defects as well as merits may be kept warm under the same blanket. This is particularly so in the larger groups of buildings that are coming to be recognized as worthy of conservation.

Once a building has been targeted for preservation, its next defense is in specific legal powers for its protection. These may be of varied degree and effectiveness. The most obvious form of legislation is the restriction against demolition. A higher degree of legal sophistication occurs in powers for the annexation of property and its maintenance by the state. Covenanted rights and restrictions are a variant of this principle. Next in the scale of effectiveness comes positive encouragement to owners by means of grants, bringing a public share and interest in the work of repair. In this way, actual legal rights over private property may be confined to a minimum while finance is encouraged from private pockets. Probably the most effective ultimate defense is selective protection, exercised as a regular part of everyday town- and country-planning control.

Negative legislation itself varies in degree. In Italy it is possible to insist upon the return even of certain pictures or chattels illegally dispersed from a building where these are adjudged to be of sufficient national importance. But negative powers are inherently weak. They convey no control over the philistine or intransigent owner and, at best, can only slow down neglect and demolition, whether deliberate or otherwise.

The national acquisition of buildings for conservation in Britain has been carried out chiefly under the Ancient Monuments Consolidation and Amendment Act of 1913, by which suitable unoccupied properties can be “taken into guardianship.” A much more rigorous application of the principle is sometimes possible in the United States, whereby the owners of whole groups of buildings held to be of sufficient distinction can in fact be legally dispossessed. These erstwhile owners may then be allowed to remain in residence on condition of the repair and rehabilitation of their buildings to a specified standard. In this way, whole areas of buildings, such as Society Hill in Philadelphia, have been taken over, concentrated redevelopment by high-rise apartments being permitted in selected inner locations, while old buildings with frontage are restored in period styles.

The most exhaustive of all restoration projects is in the United States, at Williamsburg, Virginia. This 170-acre (70-hectare) town, the colonial capital of Virginia from 1699 to 1780, has attracted the most expensive restoration program ever undertaken. Commenced in 1926, the project is dedicated to the purpose “that the future may learn from the past.” Careful and scholarly restoration has been completed on more than 500 buildings. Environmental management is of a high order. Tourist automobile traffic is excluded from the restored area in season, when a free bus service is provided. The emphasis is frankly educational. The enterprise not only owns its buildings but also staffs them, its employees wearing correct period costume.

One of the most dramatic rescue operations has been in Egypt, where the ancient temples (c. 1250 bc) of Abu Simbel were threatened with destruction by the rising waters of the Aswān High Dam. They were sawed into giant blocks and successfully reassembled 200 feet (60 metres) above the original site. This act of preservation was the result of intensive international negotiation and expertise.

Another variant on public ownership may be found in acquisition by a private body, such as the National Trust in Great Britain. Founded in 1895, this property-owning body opens to the public several hundred of its properties. The trust receives no direct government subsidy and relies upon careful economic management, although certain legal preferences operate in its favour. In the United States the National Trust for Historic Preservation operates in a similar way.

Among bodies devoted to grant aid, the Historic Buildings and Monuments Commission for England (as successor to the Historic Buildings Council) disburses grants within a modest annual budget, largely to help building owners penalized by heavy estate duties. These grants are administered to encourage owners to take pride in their own buildings. The commission is also responsible for the management of more than 400 monuments in the nation’s care.

A pioneer training program in architectural conservation has been established by the Faculty of Architecture of Rome University. Of six months’ duration, the course provides specialist training in conservation for architects of all nationalities. In many countries, comparable courses are now available to meet the need for suitably qualified and experienced architects.

Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.

Techniques of building conservation

The first requisite in conserving any building is a sensitive assessment of its history and merits. Every building has its own biography. The Parthenon in Athens, originally built (447 to 432 bc) as a temple, subsequently served as a Christian church, a mosque, and a powder magazine before it became one of the world’s greatest attractions for the tourist and art lover. A knowledge of the whole life of a building brings an essential understanding of its features and its problems.

Next, the conservator needs a thorough measured survey. Generally, this is prepared by hand, with tape and rod and level. Modern measuring techniques, including photogrammetry and stereophotogrammetry, are also used and are quick and remarkably accurate.

Third, the architect or surveyor analyzes the structural stability of the subject and its living pattern of movement. No structure is permanently still. Subsoil expands and shrinks, thrust moves against thrust, and materials move with heat and wind. Forceful exercises, such as English bell ringing, have an even greater effect on a building’s stability. Clay soil is the worst: the building protects the ground underneath but not around; and, with every downpour, a wall on saturated clay may vary the lean of the building. Many ancient buildings had piled foundations—at Winchester, the cathedral was supported on oak piles, which rotted over the centuries. In order to underpin the structure, a diver worked for months in the waterlogged soil. Framed structures can move a great deal. The skeleton of a timber-framed medieval house can be extremely crooked without losing strength if it is well triangulated and its joints are sound. A wall is theoretically safe until it leans far enough to develop tension on one side, yet even then it may be stiffened by structural cross walls. Generally, the old, evenly spread load will be stable, and any new point load or thrust will be suspect. The surveyors may check the observations over a period—e.g., by measurement with plumb lines or by simple “tell-tales” (marking devices) set across a crack, or now by electronic measuring devices of remarkable accuracy.

The surveyor lastly tests all services, especially electrical wiring, with its risk of fire; gas lines, with their perils of seepage and explosion; and plumbing, with its danger of leaks. These services are frequently redesigned and simplified as well as improved. Lightning conductors and fire-fighting equipment are an important part of the protection of any ancient building.

The conservator must analyze the good points and bad points of the building, in the context of its current and future use, and define remedies in terms of their relative urgency. He can then prepare a balanced and phased conservation plan, related to the available budget.

The first remedial task is to stabilize and consolidate the structure. Ideally, this is best done by restraining, or tying, the point of active thrust and then by replacing, splinting, or in some way giving fresh heart to any failing or defective member. Adding heavy weights such as buttresses can do more harm than good. A load can frequently be spread more widely or more evenly. A structure can, in effect, be corseted by inserting (for example, around a tower) a continuous beam or ring of concrete. This can be done even in delicate masonry and, as in underpinning, by removing alternate sections of a wall, threading in reinforcement, and casting successive sets of concrete stitches, which unite into one strengthening beam. Sometimes a metal rod or tie bar may be inserted along a direct line of thrust or weakness, linking structural elements in need of support.

After structural movement, the next serious adversary in building conservation is damp. Not only of itself but also allied with almost every other trouble, damp accelerates decay. Weather may be penetrating through whole surfaces, such as porous brickwork, or finding its way through cracks or defects in the roofing. Especially vulnerable are gutters or any part of the rainwater-collecting system. Wet weakens walling, rots timbers, and spoils finishes. The remedy may involve renewing roof finishes. It may entail inserting a continuous moisture barrier, perhaps in a modern material such as stout polyethylene. Techniques of waterproofing wet walls include the insertion of high-capillary tubes, designed to draw the moisture to themselves and to expel it, and also the injection of silicone or latex and similar water-repellent solutions into the heart of the walling. Simple methods are best. The traditional ditch, or dry area, drained if necessary, disposes of the water before it reaches the wall. Double or cavity walls, with air between them, are another defense against damp.

Again, dampness compounds decay, and the first attention should be to protective features such as copings. Both in stonework and in brickwork, much harm can be caused by damp, especially when allied with an overly hard mortar jointing. This traps moisture along the lines of the joints, bringing any harmful salts to the surface, where they crystallize and damage the facing. Mortar jointing should always be softer than the brick or stone of a wall.

Much decay is the result of poor construction. Defects are almost always accelerated by the simple contravention of good building practice. In walling, a typical cause of structural instability is a double-skin construction with rough rubble between in which, by uneven loading, one skin has been caused to bulge and to release loose material in the core of the wall. Once on the move, this rapidly gains momentum as a live wedge, forcing apart its two faces. The conservator will insert temporary support, then remedy any uneven loading and rebuild the affected area. In some cases, after loose material is washed out, the unseen cavities can be grouted up, which strengthens a wall without disturbing the facing stonework.

The roof is a building’s first defense. It must be impervious and collect water clear of a building. Roof finishes are commonly either of unit materials such as tiles, slates, or stone or of boarding covered in sheet metal, such as lead. The failure of unit materials is usually caused by decay of fixings. Iron nails are especially destructive and are best replaced by nonferrous materials, such as copper. The battens that carry the tiles or slates have a longer lifespan but also need periodic renewal. Leadwork failure is usually the result of sheer age. This material has a very long life but, if used in sheets of excessive size, has a tendency to buckle and creep as a result of expansion—especially in sunshine. Leadwork can readily be recast or can be repaired by lead burning a new patch to the original lead. Soldering is less reliable and tends to crack away.

The chief enemies of timber are the natural predators of the forest—fungi and wood-boring insects. The most voracious fungus that attacks building timbers is dry rot (Merulius lacrymans). This can spread along infected wood to sound timber, carrying its own moisture supply. It extracts cellulose, which forms the chief part of plant cells, and leaves behind a tindery and useless shell. Stagnant air and warmth accelerate its spread. Eradication must be thorough, or the trouble will rapidly reestablish itself. Modern fungicides are highly effective.

Wood-boring insects include the furniture and deathwatch beetles. From eggs laid in cracks, the larvae tunnel into timber and damage it before emerging as beetles to lay more eggs. The deathwatch beetle inhabits mostly the outer sapwood of oak, when wet or softened by rot. The furniture beetle lives mostly in deal, especially when sappy or damp. Both of these species can be eradicated with modern pesticides.

Regular maintenance is the key to building conservation; William Morris called this practice “daily care.” A building’s life can be long, human tenancy relatively short. Yet the cumulative effect of neglect can be desperately damaging. Conversely, a sensitive awareness of a building’s needs, with regular attention to them, will extend its life and promote its long enjoyment. The successful conservator identifies himself with a building’s life, its structure and demands, with the special needs of an occupant, and with the skills of today’s craftsmen. In this spirit, he can hand on to the future the best of the past.

Donald W. Insall