Jens C. Skou
- In full:
- Jens Christian Skou
- Born:
- October 8, 1918, Lemvig, Denmark
- Died:
- May 28, 2018, Aarhus
- Awards And Honors:
- Nobel Prize
- Subjects Of Study:
- adenosine triphosphate
- sodium–potassium–ATPase
Jens C. Skou (born October 8, 1918, Lemvig, Denmark—died May 28, 2018, Aarhus) was a Danish biophysicist who (with Paul D. Boyer and John E. Walker) was awarded the Nobel Prize for Chemistry in 1997 for his discovery of the enzyme called sodium-potassium-activated adenosine triphosphatase (Na+-K+ ATPase), which is found in the plasma membrane of animal cells and acts as a pump that exchanges sodium (Na+) for potassium (K+).
Skou studied medicine at the University of Copenhagen and in 1954 earned a doctorate degree at Aarhus University, where he later taught. His research on ion-carrying enzymes was based on the work of Sir Alan Hodgkin and Richard Keynes, who followed the movements of sodium and potassium in a nerve cell following stimulation. The English scientists discovered that upon activation of the neuron, sodium ions flood the cell. The sodium concentration level is restored when ions are transported back across the membrane. This process requires energy, since transport occurs against a concentration gradient (from an area of low concentration to high concentration) and so was believed to require energy in the form of the energy-carrying molecule adenosine triphosphate (ATP).
In the late 1950s Skou proposed that an enzyme is responsible for the transport of molecules through a cell’s membrane. His work with the membranes of nerve cells from crabs led to the discovery of Na+-K+ ATPase. Bound to a cell membrane, Na+-K+ ATPase is activated by external potassium and internal sodium. The enzyme pumps sodium out of the cell and potassium into it, thereby maintaining a high intracellular concentration of potassium and a low concentration of sodium relative to the surrounding external environment. Skou’s work led to the discovery of similar ATPase-based enzymes, including the ion pump that controls muscle contraction.