Quick Facts
In full:
John William Strutt, 3rd Baron Rayleigh of Terling Place
Born:
November 12, 1842, Langford Grove, Maldon, Essex, England
Died:
June 30, 1919, Terling Place, Witham, Essex (aged 76)
Awards And Honors:
Nobel Prize (1904)
Copley Medal (1899)
Notable Works:
“The Theory of Sound”

Lord Rayleigh (born November 12, 1842, Langford Grove, Maldon, Essex, England—died June 30, 1919, Terling Place, Witham, Essex) was an English physical scientist who made fundamental discoveries in the fields of acoustics and optics that are basic to the theory of wave propagation in fluids. He received the Nobel Prize for Physics in 1904 for his successful isolation of argon, an inert atmospheric gas.

Strutt suffered from poor health throughout his childhood and youth, and it was necessary for him to be withdrawn from both Eton and Harrow. In 1857 he began four years of private study under a tutor. In 1861 Strutt entered Trinity College, Cambridge, from which he was graduated with a B.A. in 1865. He early developed an absorbing interest in both the experimental and mathematical sides of physical science, and in 1868 he purchased an outfit of scientific apparatus for independent research. In his first paper, published in 1869, he gave a lucid exposition of some aspects of the electromagnetic theory of James Clerk Maxwell, the Scottish physicist, in terms of analogies that the average man would understand.

An attack of rheumatic fever shortly after his marriage in 1871 threatened his life for a time. A recuperative trip to Egypt was suggested, and Strutt took his bride, Evelyn Balfour, the sister of Arthur James Balfour, on a houseboat journey up the Nile for an extended winter holiday. On this excursion he began work on his great book, The Theory of Sound, in which he examined questions of vibrations and the resonance of elastic solids and gases. The first volume appeared in 1877, followed by a second in 1878, concentrating on acoustical propagation in material media. After some revision during his lifetime and successive reprintings after his death, the work has remained the foremost monument of acoustical literature.

Italian-born physicist Dr. Enrico Fermi draws a diagram at a blackboard with mathematical equations. circa 1950.
Britannica Quiz
Physics and Natural Law

Shortly after returning to England he succeeded to the title of Baron Rayleigh in 1873, on the death of his father. Rayleigh then took up residence at Terling Place, where he built a laboratory adjacent to the manor house. His early papers deal with such subjects as electromagnetism, colour, acoustics, and diffraction gratings. Perhaps his most significant early work was his theory explaining the blue colour of the sky as the result of scattering of sunlight by small particles in the atmosphere. The Rayleigh scattering law, which evolved from this theory, has since become classic in the study of all kinds of wave propagation.

Rayleigh’s one excursion into academic life came in the period 1879–84, when he agreed to serve as the second Cavendish Professor of Experimental Physics at Cambridge, in succession to James Clerk Maxwell. There Rayleigh carried out a vigorous research program on the precision determination of electrical standards. A classical series of papers, published by the Royal Society, resulted from this ambitious work. After a tenure of five years he returned to his laboratory at Terling Place, where he carried out practically all his scientific investigations.

A few months after resigning from Cambridge, Rayleigh became secretary of the Royal Society, an administrative post that, during the next 11 years, allowed considerable freedom for research.

Rayleigh’s greatest single contribution to science is generally considered to have been his discovery and isolation of argon, one of the rare gases of the atmosphere. Precision measurements of the density of gases conducted by him in the 1880s led to the interesting discovery that the density of nitrogen obtained from the atmosphere is greater by a small though definite amount than is the density of nitrogen obtained from one of its chemical compounds, such as ammonia. Excited by this anomaly and stimulated by some earlier observations of the ingenious but eccentric 18th-century scientist Henry Cavendish on the oxidation of atmospheric nitrogen, Rayleigh decided to explore the possibility that the discrepancy he had discovered resulted from the presence in the atmosphere of a hitherto undetected constituent. After a long and arduous experimental program, he finally succeeded in 1895 in isolating the gas, which was appropriately named argon, from the Greek word meaning “inactive.” Rayleigh shared the priority of the discovery with the chemist William Ramsay, who also isolated the new gas, though he began his work after Rayleigh’s publication of the original density discrepancy. Shortly before winning the Nobel Prize, Rayleigh wrote the entry on argon for the 10th edition (1902) of the Encyclopædia Britannica. In 1904 Rayleigh was awarded the Nobel Prize for Physics; Ramsay received the award in chemistry for his work on argon and other inert elements. The next year Rayleigh was elected president of the Royal Society.

Are you a student?
Get a special academic rate on Britannica Premium.

In his later years, when he was the foremost leader in British physics, Rayleigh served in influential advisory capacities in education and government. In 1908 he accepted the post of chancellor of the University of Cambridge, retaining this position until his death. He was also associated with the National Physical Laboratory and government committees on aviation and the treasury. Retaining his mental powers until the end, he worked on scientific papers until five days before his death, on June 30, 1919.

R. Bruce Lindsay
Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.

argon (Ar), chemical element, inert gas of Group 18 (noble gases) of the periodic table, terrestrially the most abundant and industrially the most frequently used of the noble gases. Colourless, odourless, and tasteless, argon gas was isolated (1894) from air by the British scientists Lord Rayleigh and Sir William Ramsay. Henry Cavendish, while investigating atmospheric nitrogen (“phlogisticated air”), had concluded in 1785 that not more than 1/120 part of the nitrogen might be some inert constituent. His work was forgotten until Lord Rayleigh, more than a century later, found that nitrogen prepared by removing oxygen from air is always about 0.5 percent more dense than nitrogen derived from chemical sources such as ammonia. The heavier gas remaining after both oxygen and nitrogen had been removed from air was the first of the noble gases to be discovered on Earth and was named after the Greek word argos, “lazy,” because of its chemical inertness. (Helium had been spectroscopically detected in the Sun in 1868.)

In cosmic abundance, argon ranks approximately 12th among the chemical elements. Argon constitutes 1.288 percent of the atmosphere by weight and 0.934 percent by volume and is found occluded in rocks. Although the stable isotopes argon-36 and argon-38 make up all but a trace of this element in the universe, the third stable isotope, argon-40, makes up 99.60 percent of the argon found on Earth. (Argon-36 and argon-38 make up 0.34 and 0.06 percent of Earth’s argon, respectively.) A major portion of terrestrial argon has been produced, since the Earth’s formation, in potassium-containing minerals by decay of the rare, naturally radioactive isotope potassium-40. The gas slowly leaks into the atmosphere from the rocks in which it is still being formed. The production of argon-40 from potassium-40 decay is utilized as a means of determining Earth’s age (potassium-argon dating).

Argon is isolated on a large scale by the fractional distillation of liquid air. It is used in gas-filled electric light bulbs, radio tubes, and Geiger counters. It also is widely utilized as an inert atmosphere for arc-welding metals, such as aluminum and stainless steel; for the production and fabrication of metals, such as titanium, zirconium, and uranium; and for growing crystals of semiconductors, such as silicon and germanium.

Concept artwork on the periodic table of elements.
Britannica Quiz
118 Names and Symbols of the Periodic Table Quiz

Argon gas condenses to a colourless liquid at −185.8 °C (−302.4 °F) and to a crystalline solid at −189.4 °C (−308.9 °F). The gas cannot be liquefied by pressure above a temperature of −122.3 °C (−188.1 °F), and at this point a pressure of at least 48 atmospheres is required to make it liquefy. At 12 °C (53.6 °F), 3.94 volumes of argon gas dissolve in 100 volumes of water. An electric discharge through argon at low pressure appears pale red and at high pressure, steely blue.

The outermost (valence) shell of argon has eight electrons, making it exceedingly stable and, thus, chemically inert. Argon atoms do not combine with one another; nor have they been observed to combine chemically with atoms of any other element. Argon atoms have been trapped mechanically in cagelike cavities among molecules of other substances, as in crystals of ice or the organic compound hydroquinone (called argon clathrates).

Element Properties
atomic number18
atomic weight[39.792, 39.963]
melting point−189.2 °C (−308.6 °F)
boiling point−185.7 °C (−302.3 °F)
density (1 atm, 0° C)1.784 g/litre
oxidation state0
electron config.1s22s22p63s23p6
The Editors of Encyclopaedia Britannica This article was most recently revised and updated by Amy Tikkanen.
Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.