Euclidean distance

mathematics
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Related Topics:
Euclidean space

Euclidean distance, in Euclidean space, the length of a straight line segment that would connect two points. Euclidean space is a two- or three-dimensional space in which the axioms and postulates of Euclidean geometry apply. In such a space, the distance formulas for points in rectangular coordinates are based on the Pythagorean theorem. For example, take two points (a, b) and (c, d) in two-dimensional space. (Here the Cartesian coordinate system [named for René Descartes] is used, in which points are designated by their distance along a horizontal [x] axis and a vertical [y] axis from a reference point, the origin, designated [0, 0].) One can make a right triangle by adding the point (c, b). From the Pythagorean theorem, in which the square of the length of the hypotenuse of a right triangle is equal to the sum of the squares of the lengths of the other two sides, the distance between the points (a, b) and (c, d) is given by Square root of(ac)2 + (bd)2. In three-dimensional space, the distance between the points (a, b, c) and (d, e, f) is Square root of(ad)2 + (be)2 + (cf)2. This formula can be extended to other coordinate systems, such as polar coordinates and spherical coordinates.

The Editors of Encyclopaedia Britannica This article was most recently revised and updated by Erik Gregersen.