Key People:
Max von Laue
Related Topics:
X-ray diffraction

Laue diffraction, in X-rays, a regular array of spots on a photographic emulsion resulting from X-rays scattered by certain groups of parallel atomic planes within a crystal. When a thin, pencil-like beam of X-rays is allowed to impinge on a crystal, those of certain wavelengths will be oriented at just the proper angle to a group of atomic planes so that they will combine in phase to produce intense, regularly spaced spots on a film or plate centred around the central image from the beam, which passes through undeviated. Laue diffraction, first detected by Max von Laue, a German physicist, is invaluable for crystal analysis.

The Editors of Encyclopaedia Britannica This article was most recently revised and updated by Adam Augustyn.

X-ray diffraction, phenomenon in which the atoms of a crystal, by virtue of their uniform spacing, cause an interference pattern of the waves present in an incident beam of X-rays. The atomic planes of the crystal act on the X-rays in exactly the same manner as does a uniformly ruled diffraction grating on a beam of light. A beam of X-rays contacts a crystal with an angle of incidence θ. It is reflected off the atoms of the crystal with the same angle θ. The X-rays reflect off atomic planes in the crystal that are a distance d apart. The X-rays reflecting off two different planes must interfere constructively to form an interference pattern; otherwise, the X-rays would interfere destructively and form no pattern. To interfere constructively, the difference in path length between the beams reflecting off two atomic planes must be a whole number (n) of wavelengths (λ), or nλ. This leads to the Bragg law nλ = 2d sin θ. By observing the interference pattern, the internal structure of the crystal can be deduced. See also Bragg law; Laue diffraction pattern.

The Editors of Encyclopaedia BritannicaThis article was most recently revised and updated by Erik Gregersen.