Derivatives of ammonia
- Key People:
- Joseph Priestley
- Fritz Haber
- Gerhard Ertl
Two of the more important derivatives of ammonia are hydrazine and hydroxylamine.
Hydrazine
Hydrazine, N2H4, is a molecule in which one hydrogen atom in NH3 is replaced by an ―NH2 group. The pure compound is a colourless liquid that fumes with a slight odour similar to that of ammonia. In many respects it resembles water in its physical properties. It has a melting point of 2 °C (35.6 °F), a boiling point of 113.5 °C (236.3 °F), a high dielectric constant (51.7 at 25 °C [77 °F]), and a density of 1 gram per cubic cm. As with water and ammonia, the principal intermolecular force is hydrogen bonding.
Hydrazine is best prepared by the Raschig process, which involves the reaction of an aqueous alkaline ammonia solution with sodium hypochlorite (NaOCl).
2NH3 + NaOCl → N2H4 + NaCl + H2O
This reaction is known to occur in two main steps. Ammonia reacts rapidly and quantitatively with the hypochlorite ion, OCl−, to produce chloramine, NH2Cl, which reacts further with more ammonia and base to produce hydrazine.
NH3 + OCl− → NH2Cl + OH−
NH2Cl + NH3 + NaOH → N2H4 + NaCl + H2O
In this process there is a detrimental reaction that occurs between hydrazine and chloramine and that appears to be catalyzed by heavy metal ions such as Cu2+. Gelatin is added to this process to scavenge these metal ions and suppress the side reaction.
N2H4 + 2NH2Cl → 2NH4Cl + N2
When hydrazine is added to water, two different hydrazinium salts are obtained. N2H5+ salts can be isolated, but N2H62+ salts are normally extensively hydrolyzed.
N2H4 + H2O ⇌ N2H5+ + OH−
N2H5+ + H2O ⇌ N2H62+ + OH−
Hydrazine burns in oxygen to produce nitrogen gas and water, with the liberation of a substantial amount of energy in the form of heat. N2H4 + O2 → N2 + 2H2O + heat As a result, the major noncommercial use of this compound (and its methyl derivatives) is as a rocket fuel. Hydrazine and its derivatives have been used as fuels in guided missiles, spacecraft (including the space shuttles), and space launchers. For example, the Apollo program’s Lunar Module was decelerated for landing, and launched from the Moon, by the oxidation of a 1:1 mixture of methyl hydrazine, H3CNHNH2, and 1,1-dimethylhydrazine, (H3C)2NNH2, with liquid dinitrogen tetroxide, N2O4. Three tons of the methyl hydrazine mixture were required for the landing on the Moon, and about one ton was required for the launch from the lunar surface. The major commercial uses of hydrazine are as a blowing agent (to make holes in foam rubber), as a reducing agent, in the synthesis of agricultural and medicinal chemicals, as algicides, fungicides, and insecticides, and as plant growth regulators.
Hydroxylamine
Hydroxylamine, NH2OH, may be thought of as being derived from ammonia by replacement of a hydrogen atom with a hydroxyl group (―OH). The pure compound is a colourless solid that is hygroscopic (rapidly absorbs water) and thermally unstable. It must be stored at 0 °C (32 °F) so that it will not decompose. It melts at 33 °C (91.4 °F), has a density of 1.2 grams per cubic cm at 33 °C, and has a high dielectric constant (ε = 78). Aqueous solutions of hydroxylamine are not as strongly basic as either ammonia or hydrazine. Hydroxylamine can be prepared by a number of reactions. A laboratory synthesis involves the reduction of aqueous potassium nitrite, KNO2, or nitrous acid, HNO2, with the hydrogen sulfite ion, HSO3−. In general, hydroxylamine is stored and used as an aqueous solution or as a salt (for example, NH3OH+NO3−). It is often used in the preparation of oximes.