For the first two-thirds of the 20th century, chemistry was seen by many as the science of the future. The potential of chemical products for enriching society appeared to be unlimited. Increasingly, however, and especially in the public mind, the negative aspects of chemistry have come to the fore. Disposal of chemical by-products at waste-disposal sites of limited capacity has resulted in environmental and health problems of enormous concern. The legitimate use of drugs for the medically supervised treatment of diseases has been tainted by the growing misuse of mood-altering drugs. The very word chemicals has come to be used all too frequently in a pejorative sense. There is, as a result, a danger that the pursuit and application of chemical knowledge may be seen as bearing risks that outweigh the benefits.

It is easy to underestimate the central role of chemistry in modern society, but chemical products are essential if the world’s population is to be clothed, housed, and fed. The world’s reserves of fossil fuels (e.g., oil, natural gas, and coal) will eventually be exhausted, some as soon as the 21st century, and new chemical processes and materials will provide a crucial alternative energy source. The conversion of solar energy to more concentrated, useful forms, for example, will rely heavily on discoveries in chemistry. Long-term, environmentally acceptable solutions to pollution problems are not attainable without chemical knowledge. There is much truth in the aphorism that “chemical problems require chemical solutions.” Chemical inquiry will lead to a better understanding of the behaviour of both natural and synthetic materials and to the discovery of new substances that will help future generations better supply their needs and deal with their problems.

Progress in chemistry can no longer be measured only in terms of economics and utility. The discovery and manufacture of new chemical goods must continue to be economically feasible but must be environmentally acceptable as well. The impact of new substances on the environment can now be assessed before large-scale production begins, and environmental compatibility has become a valued property of new materials. For example, compounds consisting of carbon fully bonded to chlorine and fluorine, called chlorofluorocarbons (or Freons), were believed to be ideal for their intended use when they were first discovered. They are nontoxic, nonflammable gases and volatile liquids that are very stable. These properties led to their widespread use as solvents, refrigerants, and propellants in aerosol containers. Time has shown, however, that these compounds decompose in the upper regions of the atmosphere and that the decomposition products act to destroy stratospheric ozone. Limits have now been placed on the use of chlorofluorocarbons, but it is impossible to recover the amounts already dispersed into the atmosphere.

The chlorofluorocarbon problem illustrates how difficult it is to anticipate the overall impact that new materials can have on the environment. Chemists are working to develop methods of assessment, and prevailing chemical theory provides the working tools. Once a substance has been identified as hazardous to the existing ecological balance, it is the responsibility of chemists to locate that substance and neutralize it, limiting the damage it can do or removing it from the environment entirely. The last years of the 20th century will see many new, exciting discoveries in the processes and products of chemistry. Inevitably, the harmful effects of some substances will outweigh their benefits, and their use will have to be limited. Yet, the positive impact of chemistry on society as a whole seems beyond doubt.

Melvyn C. Usselman

The history of chemistry

Chemistry has justly been called the central science. Chemists study the various substances in the world, with a particular focus on the processes by which one substance is transformed into another. Today, chemistry is defined as the study of the composition and properties of elements and compounds, the structure of their molecules, and the chemical reactions that they undergo. Rather than starting with such modern concepts, though, a fuller appreciation of the subject requires an examination of the historical processes that led to these concepts.

Philosophy of matter in antiquity

Indeed, the philosophers of antiquity could have had no notion that all matter consists of the combinations of a few dozen elements as they are understood today. The earliest critical thinking on the nature of substances, as far as the historical record indicates, was by certain Greek philosophers beginning about 600 bce. Thales of Miletus, Anaximander, Empedocles, and others propounded theories that the world consisted of varieties of earth, water, air, fire, or indeterminate “seeds” or “unbounded” matter. Leucippus and Democritus propounded a materialistic theory of invisibly tiny irreducible atoms from which the world was made. In the 4th century bce, Plato (influenced by Pythagoreanism) taught that the world of the senses was but the shadow of a mathematical world of “forms” beyond human perception.

In contrast, Plato’s student Aristotle took the world of the senses seriously. Adopting Empedocles’s view that the terrestrial region consisted of earth, water, air, and fire, Aristotle taught that each of these materials was a combination of qualities such as hot, cold, moist, and dry. For Aristotle, these “elements” were not building blocks of matter as they are thought of now; rather, they resulted from the qualities imposed on otherwise featureless prime matter. Consequently, there were many different kinds of earth, for instance, and nothing precluded one element from being transformed into another by appropriate adjustment of its qualities. Thus, Aristotle rejected the speculations of the ancient atomists and their irreducible fundamental particles. His views were highly regarded in late antiquity and remained influential throughout the Middle Ages.

For thousands of years before Aristotle, metalsmiths, assayers, ceramists, and dyers had worked to perfect their crafts using empirically derived knowledge of chemical processes. By Hellenistic and Roman times, their skills were well advanced, and sophisticated ceramics, glasses, dyes, drugs, steels, bronze, brass, alloys of gold and silver, foodstuffs, and many other chemical products were traded. Hellenistic Alexandria in Egypt was a centre for these arts, and it was apparently there that a group of ideas emerged that later became known as alchemy.

Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.

Alchemy

Three different sets of ideas and skills fed into the origin of alchemy. First was the empirical sophistication of jewelers, gold- and silversmiths, and other artisans who had learned how to fashion precious and semiprecious materials. Among their skills were smelting, assaying, alloying, gilding, amalgamating, distilling, sublimating, painting, and lacquering. The second component was the early Greek theory of matter, especially Aristotelian philosophy, which suggested the possibility of unlimited transformability of one kind of matter into another. The third of alchemy’s roots consisted of a complex combination of ideas derived from Asian philosophies and religions, Hellenistic mystery religions, and what became known as the Hermetic writings (a body of pseudonymous Greek writings on magic, astrology, and alchemy ascribed to the Egyptian god Thoth or his Greek counterpart Hermes Trismegistos). It is important to note, however, that Hellenistic Egypt is only one of several candidates for the homeland of alchemy; at about the same time, similar ideas were developing in Persia, China, and elsewhere.

In general, alchemists sought to manipulate the properties of matter in order to prepare more valuable substances. Their most familiar quest was to find the philosopher’s stone, a magical substance that would transmute ordinary metals such as copper, tin, iron, or lead into silver or gold. Important materials in this craft included sulfur, mercury, and electrum (a gold-silver alloy). However, many other alchemists spurned alchemical transmutation (aurifaction), devoting their efforts instead to a pharmaceutical preparation known as the “elixir of life” that would cure any disease, including the ultimate disease, death. The philosopher’s stone and the elixir of life could be considered parallel quests, for each would “cure” metallic or human bodies, respectively, yielding immortal perfection. There was a parallel religious dimension to all this as well. Finally, some alchemists spurned material manipulations entirely, devoting themselves to meditation with the goal of achieving spiritual purity and ultimate redemption.

After the rise of Islam, Arabic-speaking scholars of the 9th century translated Greek scientific and philosophical works into their own language. Thereafter, philosophers in the Islamic world pursued chemical and alchemical ideas with enthusiasm and success. The sizable number of modern chemical words derived from Arabic—alcohol, alkali, alchemy, zircon, elixir, natron, and others—suggests the importance of this period for the history of chemistry. One of the leading ideas of medieval Arabic alchemy was the theory that all metals were formed of sulfur and mercury in various proportions and that altering those proportions could transform the metal under study—even to produce silver or gold from lead or iron. Not every alchemist, however, believed in the possibility of such transmutations.

Later, scholars in Christian western Europe learned of ancient Greek and early medieval Arabic philosophy by translating these books into Latin. Thus, the alchemical tradition, along with the rest of the Greco-Arabic philosophical and scientific corpus, passed to the West in the course of the 12th century. Well-known Scholastic philosophers of the 13th century, such as Roger Bacon in England and Albertus Magnus in Germany and France, wrote on alchemy. Alongside this learned literature, the empirical chemical arts continued to flourish and comprised a largely separate realm of expertise among artisans, engineers, and mechanics.

An important Western alchemist of the late 13th century was the pseudonymous Latin writer who called himself Geber in homage to the 8th-century Arab alchemist Jābir ibn Ḥayyān. Geber was the first to record methods for the preparation and use of sulfuric acid, nitric acid, and hydrochloric acid; the earliest clear evidence for widespread familiarity with distilled alcohol also does not much predate his day. These substances could only have been produced by novel stills that were more robust and efficient than their predecessors, and the appearance of these remarkable new materials produced dramatic changes in the repertoire of chemists.

The Renaissance saw even stronger interest in the science. The German-Swiss physician Paracelsus practiced alchemy, Kabbala, astrology, and magic, and in the first half of the 16th century he championed the role of mineral rather than herbal remedies. His emphasis on chemicals in pharmacy and medicine was influential on later figures, and lively controversies over the Paracelsian approach raged around the turn of the 17th century. Gradually the Hermetic influence declined in Europe, however, as certain celebrated feats of putative aurifaction were revealed as frauds.

It would be a mistake to think that open-minded empirical investigation that is well integrated with theory (which is how one might define science) was absent from the history of alchemy. Alchemy had many quite scientific practitioners through the centuries, notably including Britain’s Robert Boyle and Isaac Newton—heroes of the scientific revolution of the 17th century—who applied systematic and quantitative method to their (mostly secret) alchemical studies. Indeed, as late as the end of the 17th century there was little to distinguish alchemy from chemistry, either substantively or semantically, since both words were applied to the same set of ideas. It was only in the early 18th century that chemists conferred different definitions on the two words, banishing alchemy to the ashbin of discredited occult pseudosciences.

Phlogiston theory

This shift was partly simple self-promotion by chemists in the new environment of the Enlightenment, whose vanguard glorified rationalism, experiment, and progress while demonizing the mystical. However, it was also becoming ever clearer that certain central ideas of alchemy (especially metallic transmutation) had never been demonstrated. One of the leaders in this regard was the German physician and chemist Georg Ernst Stahl, who vigorously attacked alchemy (after dabbling in it himself) and proposed an expansive new chemical theory. Stahl noted parallels between the burning of combustible materials and the calcination of metals—the conversion of a metal into its calx, or oxide. He suggested that both processes consisted of the loss of a material fluid, contained within all combustibles, called phlogiston.

Phlogiston became the centrepiece of a broad-ranging theory that dominated 18th-century chemical thought. Phlogiston, in short, was thought to be a material substance that defined combustibility. When metallic iron becomes red rust, it loses its phlogiston, just as a burning log does. The ashes of the log and the red rust “ashes” (calx) of iron can no longer burn because they no longer contain the principle of combustibility, or phlogiston. But iron calx can be converted back to the metal if it is strongly heated in the presence of a phlogiston-rich substance such as charcoal. The charcoal donates its phlogiston (becoming ashes itself), while the calx turns into molten metallic iron. Thus, smelting (reduction) of metallic ores could also be understood in phlogistic terms. Later phlogistonists added respiration to the number of phenomena that the theory could elucidate. An animal breathes air, emitting phlogiston in an analogy to a slow fire, fueled by the phlogiston-rich food it consumes. Earth’s atmosphere avoids excess accumulation of phlogiston because plants incorporate it into combustible plant tissues that can then be used as animal food. Combustion, calcination, or respiration eventually cease in an enclosed space because air has a limited capacity to absorb the phlogiston emitted from the burning, calcining, or respiring entity.

The phlogiston theory became popular both because of its great success in explaining phenomena and guiding further investigation and because of a certain Enlightenment predilection for materialistic physical theories (the putative fluid of heat became known as caloric, and there were other suggested fluids of electricity, light, and so on). This materialist-mechanist trend can also be seen in the diffuse but powerful influence of Newton and René Descartes on chemists of the 18th century. Enlightenment chemists established distinctive scientific communities and a well-defined discipline (closely allied, to be sure, with medical and artisanal studies) in the major countries of Europe. The chemist’s workplace or laboratory (the word itself had been coined in the Renaissance to apply to the chemical arts) was now closely associated with the field, and a standardized repertoire of operations was taught there.

Still unsettled were some fundamental issues relating to chemical composition. To a phlogistonist, a metallic calx was elemental, and the associated metal was a compound of calx plus phlogiston. This puzzled some, though, since the metal gained rather than lost weight when it supposedly lost phlogiston to become a calx. The issues were sharpened in the 1770s, when the virtuoso English chemist (and Unitarian minister) Joseph Priestley produced a new gas by heating certain minerals. A candle burned in this gas with extraordinary vigour, and in an enclosed space a mouse breathing it survived far longer than one could in ordinary air. Priestley’s explanation was that the new gas had been radically dephlogisticated and, hence, had much greater capacity than air for absorbing phlogiston.

Actually, gases (then usually known as airs) were a relatively novel object of chemical attention. In Scotland in 1756, Joseph Black studied the gas given off in respiration and combustion, characterizing it chemically and following its participation in certain chemical reactions. (Black, a physician, taught chemistry as a branch of medicine, as did most academic chemists of this era.) He called the new gas “fixed air,” since it was also found “fixed” in certain minerals such as limestone. His discovery that this gas was a normal component of common air (at a fraction of a percent, to be sure) was the first clear indication that atmospheric air was a mixture rather than a homogeneous element. In the following quarter century, many new gases were discovered and studied, by such workers as Priestley, the English physicist and chemist Henry Cavendish, and the Swedish pharmacist Carl Scheele.