Factors affecting enzyme activity

inenzyme
print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://www.britannica.com/science/enzyme
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Because enzymes are not consumed in the reactions they catalyze and can be used over and over again, only a very small quantity of an enzyme is needed to catalyze a reaction. A typical enzyme molecule can convert 1,000 substrate molecules per second. The rate of an enzymatic reaction increases with increased substrate concentration, reaching maximum velocity when all active sites of the enzyme molecules are engaged. The enzyme is then said to be saturated, the rate of the reaction being determined by the speed at which the active sites can convert substrate to product.

Enzyme activity can be inhibited in various ways. Competitive inhibition occurs when molecules very similar to the substrate molecules bind to the active site and prevent binding of the actual substrate. Penicillin, for example, is a competitive inhibitor that blocks the active site of an enzyme that many bacteria use to construct their cell walls.

Noncompetitive inhibition occurs when an inhibitor binds to the enzyme at a location other than the active site. In some cases of noncompetitive inhibition, the inhibitor is thought to bind to the enzyme in such a way as to physically block the normal active site. In other instances, the binding of the inhibitor is believed to change the shape of the enzyme molecule, thereby deforming its active site and preventing it from reacting with its substrate. This latter type of noncompetitive inhibition is called allosteric inhibition; the place where the inhibitor binds to the enzyme is called the allosteric site. Frequently, an end-product of a metabolic pathway serves as an allosteric inhibitor on an earlier enzyme of the pathway. This inhibition of an enzyme by a product of its pathway is a form of negative feedback.

Allosteric control can involve stimulation of enzyme action as well as inhibition. An activator molecule can be bound to an allosteric site and induce a reaction at the active site by changing its shape to fit a substrate that could not induce the change by itself. Common activators include hormones and the products of earlier enzymatic reactions. Allosteric stimulation and inhibition allow production of energy and materials by the cell when they are needed and inhibit production when the supply is adequate.

The Editors of Encyclopaedia Britannica
This article was most recently revised and updated by Kara Rogers.