Sources of epidemiological data

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Epidemiologists use primary and secondary data sources to calculate rates and conduct studies. Primary data is the original data collected for a specific purpose by or for an investigator. For example, an epidemiologist may collect primary data by interviewing people who became ill after eating at a restaurant in order to identify which specific foods were consumed. Collecting primary data is expensive and time-consuming, and it usually is undertaken only when secondary data is not available. Secondary data is data collected for another purpose by other individuals or organizations. Examples of sources of secondary data that are commonly used in epidemiological studies include birth and death certificates, population census records, patient medical records, disease registries, insurance claim forms and billing records, public health department case reports, and surveys of individuals and households.

Descriptive and analytical epidemiology

Descriptive epidemiology is used to characterize the distribution of disease within a population. It describes the person, place, and time characteristics of disease occurrence. Analytical epidemiology, on the other hand, is used to test hypotheses to determine whether statistical associations exist between suspected causal factors and disease occurrence. It also is used to test the effectiveness and safety of therapeutic and medical interventions. The tests of analytical epidemiology are carried out through four major types of research study designs: cross-sectional studies, case-control studies, cohort studies, and controlled clinical trials.

Cross-sectional studies are used to explore associations of disease with variables of interest. For example, a cross-sectional study designed to investigate whether residential exposure to the radioactive gas radon increases the risk of lung cancer may examine the level of radon gas in the homes of lung cancer patients. Cross-sectional studies have the advantage of being inexpensive and simple to conduct. Their main disadvantage is that they establish associations at most, not causality.

Case-control studies start with people with a particular disease (cases) and a suitable control group without the disease and then compare the two groups for their exposure to the factor that is suspected of having caused the disease. Case-control studies are most useful for ascertaining the cause of rare events, such as rare cancers. Case-control studies have the advantages of being quick to conduct and inexpensive, and they require only a small number of cases and controls. Their main disadvantage is that they rely on recall, which may be biased, or on records to determine exposure status.

Cohort studies are observational studies in which a defined group of people (the cohort) is followed over time and outcomes are compared for individuals who were exposed or not exposed to a factor at different levels. Cohorts can be assembled in the present and followed into the future (a concurrent cohort study) or identified from past records (a historical cohort study). The main advantage of cohort studies is that they identify the timing and directionality of events. Their main disadvantages are that they require large sample sizes and long follow-up times. They also are not suitable for investigating rare diseases.

Controlled clinical trials are studies that test therapeutic drugs or other health or medical interventions to assess their effectiveness and safety. A controlled clinical trial compares the outcome of a new drug or intervention given to an experimental group with a control group that does not receive the same drug or intervention. To minimize bias, individuals involved in clinical trials may be randomly assigned to the experimental and control groups. In many countries, new therapeutic agents and medical devices are subject to rigorous controlled clinical trials before they are made available to the public. A major advantage of controlled clinical trials is that they provide unbiased results; however, they are very expensive to conduct.

Ross M. Mullner The Editors of Encyclopaedia Britannica