Direct evidence for the occurrence of filtration at the glomerulus was first provided by experiments on the amphibian kidney. Although amphibians are formally given the status of terrestrial animals, they are poorly adapted to life on land. They excrete nitrogen in the form of urea and cannot produce urine more concentrated than the blood. Their skins are permeable to water. On land amphibians are liable to lose water very rapidly by evaporation. In fresh water they suffer entry of water by osmosis, which is counteracted by the excretion of a large volume of dilute urine. The urine is stored in a large bladder before being voided, providing a reserve of water the animal can use when it comes on land.

When an amphibian leaves the water, a number of physiological adjustments are made that have the effect of conserving water. The rate of glomerular filtration is reduced by restriction of the blood supply, and this together with an increased release of antidiuretic hormone results in the production of a small volume of urine of the same concentration as the blood. Antidiuretic hormone (ADH, also known as vasopressin, which increases the permeability of the distal and collecting tubules to water) also increases the permeability of the bladder to water and allows the stored urine to be reabsorbed into the body.

Fishes

The homeostasis problem is the same for freshwater fishes as for other freshwater animals. Water enters the body by osmosis and salts leach out. To compensate, the kidney (which has large glomeruli) produces a relatively large amount of dilute urine (about 20 percent of the body weight per day). This serves to remove the water but by itself is insufficient to prevent gradual loss of salts. Extremely diluted salts are taken up from the fresh water and transported directly into the blood by certain specialized cells in the gills. Nitrogenous excretion is no problem: some ammonia is carried away in the large volume of dilute urine, but most of it simply escapes to the external medium by diffusing through the gills.

By contrast, the homeostasis problem of marine fishes is unlike that of most marine animals. The salt content of the blood of marine fishes is less than half that of seawater (see below Evolution of the vertebrate excretory system); consequently, marine fishes tend to lose water and gain salt. This, it would seem, could be compensated most easily by the excretion of urine more concentrated than the blood, but the kidneys of fishes are not able to do this. In marine bony fishes the kidney has small glomeruli and produces only a small amount (about 4 percent of the body weight per day) of urine, which is of the same concentration as the blood. The fish replaces its lost water by continually swallowing seawater, and the special cells of the gills, working in reverse, reject salt to the external medium. Nitrogen is excreted mostly as ammonia but also as another detoxication product, trimethylamine oxide.

In sharks and rays ammonia is converted to urea, and urea plays an important role in homeostasis. Urea is retained in the blood to such an extent that the blood is slightly more concentrated than seawater. Thus loss of water by osmosis is prevented and these fish have no need to swallow seawater. Any excess of salt in their bodies is removed via the rectal gland, functionally analogous to the salt gland of birds.

Osmotic and ionic regulation in fishes is under hormonal control. This has been studied particularly in fishes such as eels and salmon, which are able to move between fresh water and seawater.

Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.

Evolution of the vertebrate excretory system

Studies of the embryonic development of primitive vertebrates, such as the dogfish shark, clearly show that the excretory system arises from a series of tubules, one pair in every segment of the body between the heart and the tail. This continuous series of tubules constitutes the archinephros, the name implying that the kidney of the ancestral vertebrate had some such form as this. Each tubule opens internally to the body cavity and may, in the remote past, have opened separately to the exterior; but in all living vertebrates the tubules open on each side into a longitudinal duct, the archinephric duct. At the posterior end of the body cavity the two archinephric ducts unite before opening to the exterior. Later in development, Bowman’s capsule arises as a diverticulum of each tubule, subsequently becoming indented by the glomerulus. Eventually, the tubules usually lose their internal openings to the body cavity. The most anterior tubules of the archinephros (pronephros) usually degenerate in the adult.

These ducts and tubules also subserve the reproductive function, and for this reason they are also called the urogenital system. The extent to which the ducts and tubules are shared is greater in the male than in the female. In the male the spermatic tubules of the testis connect with the kidney tubules in the middle region of the archinephros (mesonephros), and in some vertebrates (e.g., the frog) where there is no development of the posterior region (metanephros), the tubules of the mesonephros serve to convey both urine and sperm. In the reptiles, birds, and mammals there is greater separation of function, the mesonephros being exclusively genital and the metanephros being exclusively urinary.

In the female, even in the lower vertebrates, the two systems are confluent only at the posterior end. It has been held that the oviduct is a derivative of the archinephric duct, but the evidence for this is not compelling.

In primitive marine animals the blood is almost identical with seawater in composition; in typical freshwater animals the concentration of the blood is about half that of seawater. Many originally marine animals have evolved the ability to live in fresh water; relatively few animals, after having thus evolved, have returned to the sea, and in none of them has the blood returned to its original “seawater” concentration. The earliest fossil vertebrates are found in marine deposits, but the fossil record shows clearly that the early evolution of fishes took place in fresh water. It is assumed that the blood of early freshwater fishes, like that of other freshwater animals, was osmotically equivalent to half-strength seawater. The sharks and rays returned to the sea during the Carboniferous Period, and no doubt at that time they evolved the device of urea retention. The bony fishes returned to the sea later, in the Mesozoic Era, and solved their problem by swallowing seawater and rejecting excess salt at the gills.

James Arthur Ramsay The Editors of Encyclopaedia Britannica