Purposes and techniques of forest management

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://www.britannica.com/science/forestry
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Multiple-use concept

The forests of the world provide numerous amenities and ecosystem services in addition to being a source of wood products. The various public, industrial, and private owners of forestland may have quite different objectives for the forest resources they control. Industrial and private owners may be most interested in producing a harvestable product for a processing mill. However, they also may want other benefits, such as forage for grazing animals, watershed protection, recreational use, and wildlife habitat. On public lands the multiple-use land management concept has become the guiding principle for enlightened foresters. This is a complex ecological and sociological concept in contrast to the single-use principle of the past. The challenge, in the words of Gifford Pinchot, is to “ensure the greatest good for the most people over the long run.” Thus timber production may have top priority in some areas, but in others, such as those near large population centres, recreational values may have high priority. Multiple use calls for exceptional skill on the part of forest managers.

Sustained yield

Forest management originated in the desire of the large central European landowners to secure dependable income to maintain their castles and retinues of servants. Today forest management is still primarily economic in essence, because modern forest industries, mainly sawmilling and paper manufacture, can be efficient only on a continuous-operation basis.

Foresters think in long time scales, in line with the long life of their renewable crop. However, it is possible that a forest can be managed in such a way that a modest timber crop may be harvested indefinitely year after year if annual harvest and the losses due to fire, insects, diseases, and other destructive agents are counterbalanced by annual growth. This is the sustained-yield concept. An important element is the rotation, or age to which each crop can be grown before it is succeeded by the next one. Examples of short rotation periods in the subtropics are 7 years for leucaena for fuelwood, 10 years for eucalyptus, and 20 years for pine for pulpwood. Here a sustained yield could in theory be obtained simply by felling one-tenth of the eucalyptus forest each year and replanting it. Rotation periods for pulpwood in northern Europe and North America extend to 50 years. Softwood sawlogs often need 100 years to reach an economic size, while rotation periods for broad-leaved trees, such as oak and beech, in central Europe, may extend to two centuries. Over so long a growing spell only part of the lumber yield is obtained by the clear-cutting of a small fraction of the forest each year. The rest is secured by systematically thinning out the whole forest periodically.

Sustained-yield principles are likewise applied to minor forest produce. Turpentine and pitch are obtained by the systematic tapping of the lower trunk of certain subtropical pines. Successive cuts with a chisel-like tool every few days during a succession of summers eventually kill the trees. To ensure continued yields, crops of young pines are raised rotationally to replace those felled. A similar system is followed for the rubber tree (Hevea brasiliensis) that is grown in plantations.

Forest products

The culture of trees in natural forests and plantations for the yield of lumber, pulp, chips, and specialty products is a principal management objective. In many parts of the world the harvest of wood for firewood and charcoal is the dominant use, and these products are often in short supply. Timber stands must be felled and regenerated in an orderly sequence to meet continuing industrial demands.

Silviculture

Silviculture is the branch of forestry concerned with the theory and practice of controlling forest establishment, composition, and growth. Like forestry itself, silviculture is an applied science that rests ultimately upon the more fundamental natural and social sciences. The immediate foundation of silviculture in the natural sciences is the field of silvics, which deals with the laws underlying the growth and development of single trees and of the forest as a biologic unit. Growth, in turn, depends on local soils and climate, competition from other vegetation, and interrelations with animals, insects, and other organisms, both beneficial and destructive. The efficient practice of silviculture demands knowledge of such fields as ecology, plant physiology, entomology, and soil science and is concerned with the economic as well as the biologic aspects of forestry. The implicit objective of forestry is to make the forest economically useful to humans.

The practice of silviculture is divided into three areas: methods of regeneration, intermediate cuttings, and protection. In every forest the time comes when it is desirable to harvest a portion of the timber and to replace the trees removed with others of a new generation. The act of replacing old trees, either naturally or artificially, is called regeneration or reproduction, and these two terms also refer to the new growth that develops. The period of regeneration begins when preparatory measures are initiated and does not end until young trees have become established in acceptable numbers and are fully adjusted to the new environment. The rotation is the period during which a single crop or generation is allowed to grow.

Intermediate cuttings are various types of cuttings made during the development of the forest—i.e., from the reproduction stage to maturity. These cuttings or thinnings are made to improve the existing stand of trees, to regulate growth, and to provide early financial returns, without any effort directed at regeneration. Intermediate cuttings are aimed primarily at controlling growth through adjustments in stand density, the regulation of species composition, and selection of individuals that will make up the harvest trees. Protection of the stand against fire, insects, fungi, animals, and atmospheric disturbances is as much a part of silviculture as is harvesting, regenerating, and tending the forest crop.

Silvicultural systems are divided into those employing natural regeneration, whereby tree crops are renewed by natural seeding or occasionally sprout regrowth, and those involving artificial regeneration, whereby trees are raised from seed or cuttings. Natural regeneration is easier but may be slow and irregular; it can only renew existing forests with the same sorts of tree that grew before. Artificial regeneration needs more effort, yet can prove quicker, more even, and in the long run more economical. It permits the introduction of new sorts of trees or better strains of the preexisting ones, and trees can be spaced to allow for heavy machinery.