Plural:
maria

mare, any flat, dark plain of lower elevation on the Moon. The term, which in Latin means “sea,” was erroneously applied to such features by telescopic observers of the 17th century. In actuality, maria are huge basins containing lava flows marked by craters, ridges, faults, and straight and meandering valleys called rilles and are devoid of water. There are about 20 major areas of this type, most of them—including the largest ones—located on the side of the Moon that always faces Earth. Maria are the largest topographic features on the Moon and can be seen from Earth with the unaided eye. (Together with the bright lunar highlands, they form the face of the “man in the moon.”)

Samples of lunar rock and soil brought back by Apollo astronauts proved that the maria are composed of basalt formed from surface lava flows that later congealed. The surface, down to approximately 5 metres (16 feet), shows effects of churning, fusing, and fragmenting as a result of several billion years of bombardment by small meteoroids. This debris layer, comprising rock fragments of all sizes down to fine dust, is called regolith. Before the first unmanned spacecraft landings on the Moon in the 1960s, some astronomers feared that the surface would be so pulverized that the machines might sink in. These missions—and the manned landings that followed—revealed that the regolith was only somewhat compressible and was firm enough to be supportive.

The maria basins were formed beginning about 3.9 billion years ago during a period of intense bombardment by asteroid-sized bodies. This was well after the lunar crust had cooled and solidified enough, following the Moon’s formation, to retain large impact scars. Then, over a period lasting until perhaps three billion years ago, a long sequence of volcanic events flooded the giant basins and surrounding low-lying areas with magma originating hundreds of kilometres within the interior. Although the recognized giant impact basins are distributed similarly on the near and far sides of the Moon, most of the far-side basins were never flooded with lava to form maria. The reason remains to be clarified, but it may be related to an asymmetry of the Moon’s crust, which appears to be about twice as thick on the far side as on the near side and thus less likely to have been completely ruptured by large impacts. Most of the maria are associated with mascons, regions of particularly dense lava that create anomalies in the Moon’s gravitational field.

News

NASA Just Found the Moon Is Uneven—What We Know So Far May 14, 2025, 5:56 AM ET (Newsweek)

Moon, Earth’s sole natural satellite and nearest large celestial body. Known since prehistoric times, it is the brightest object in the sky after the Sun. It is designated by the symbol ☽. Its name in English, like that of Earth, is of Germanic and Old English derivation.

The Moon’s desolate beauty has been a source of fascination and curiosity throughout history and has inspired a rich cultural and symbolic tradition. In past civilizations the Moon was regarded as a deity, its dominion dramatically manifested in its rhythmic control over the tides and the cycle of female fertility. Ancient lore and legend tell of the power of the Moon to instill spells with magic, to transform humans into beasts, and to send people’s behavior swaying perilously between sanity and lunacy (from the Latin luna, “Moon”). Poets and composers were invoking the Moon’s romantic charms and its darker side, and writers of fiction were conducting their readers on speculative lunar journeys long before Apollo astronauts, in orbit above the Moon, sent back photographs of the reality that human eyes were witnessing for the first time.

Centuries of observation and scientific investigation have been centered on the nature and origin of the Moon. Early studies of the Moon’s motion and position allowed the prediction of tides and led to the development of calendars. The Moon was the first new world on which humans set foot; the information brought back from those expeditions, together with that collected by automated spacecraft and remote-sensing observations, has led to a knowledge of the Moon that surpasses that of any other cosmic body except Earth itself. Although many questions remain about its composition, structure, and history, it has become clear that the Moon holds keys to understanding the origin of Earth and the solar system. Moreover, given its nearness to Earth, its rich potential as a source of materials and energy, and its qualifications as a laboratory for planetary science and a place to learn how to live and work in space for extended times, the Moon remains a prime location for humankind’s first settlements beyond Earth orbit.

Properties of the Moon and the Earth-Moon system
Moon Earth approximate ratio (Moon to Earth)
mean distance from Earth (orbital radius) 384,400 km
period of orbit around Earth (sidereal period of revolution) 27.3217 Earth days
inclination of equator to ecliptic plane (Earth's orbital plane) 1.53° 23.44°
inclination of equator to body's own orbital plane (obliquity to orbit) 6.68° 23.44°
inclination of orbit to Earth's Equator 18.28°−28.58°
eccentricity of orbit around Earth 0.0549
recession rate from Earth 3.8 cm/year
rotation period synchronous with orbital period 23.9345 hr
mean radius 1,737 km 6,378 km 1:4
surface area 37,900,000 km2 510,000,000 km2 (land area, 149,000,000 km2) 1:14
mass 0.0735 × 1024 kg 5.976 × 1024 kg 1:81
mean density 3.34 g/cm3 5.52 g/cm3 1:1.7
mean surface gravity 162 cm/sec2 980 cm/sec2 1:6
escape velocity 2.38 km/sec 11.2 km/sec 1:5
mean surface temperature day, 380 K (224 °F, 107 °C); night, 120 K (−244 °F, −153 °C) 288 K (59 °F, 15 °C)
temperature extremes 396 K (253 °F, 123 °C) to 40 K (−388 °F, −233 °C) 330 K (134 °F, 56.7 °C) to 184 K (−128.5 °F, −89.2 °C)
surface pressure 3 × 10−15 bar 1 bar 1:300 trillion
atmospheric molecular density day, 104 molecules/cm3; night, 2 × 105 molecules/cm3 2.5 × 1019 molecules/cm3 (at standard temperature and pressure) about 1:100 trillion
average heat flow 29 mW/m2 63 mW/m2 1:2.2