The compounds of mercury are either of +1 or +2 oxidation state. Mercury(II) or mercuric compounds predominate. Mercury does not combine with oxygen to produce mercury(II) oxide, HgO, at a useful rate until heated to the range of 300 to 350 °C (572 to 662 °F). At temperatures of about 400 °C (752 °F) and above, the reaction reverses with the compound decomposing into its elements. Antoine-Laurent Lavoisier and Joseph Priestley used this reaction in their study of oxygen.
There are relatively few mercury(I) or mercurous compounds. The mercury(I) ion, Hg22+, is diatomic and stable. Mercury(I) chloride, Hg2Cl2 (commonly known as calomel), is probably the most important univalent compound. It was used in antiseptic salves. Mercury(II) chloride, HgCl2 (also called bichloride of mercury or corrosive sublimate), is perhaps the commonest bivalent compound. Although extremely toxic, this odourless, colourless substance has a wide variety of applications. In agriculture it is used as a fungicide, in medicine it was sometimes employed as a topical antiseptic in concentrations of one part per 2,000 parts of water, and in the chemical industry it serves as a catalyst in the manufacture of vinyl chloride and as a starting material in the production of other mercury compounds. Mercury(II) oxide, HgO, provides elemental mercury for the preparation of various organic mercury compounds and certain inorganic mercury salts. This red or yellow crystalline solid is also used as an electrode (mixed with graphite) in zinc-mercuric oxide electric cells and in mercury batteries. Mercury(II) sulfide, HgS, is a black or red crystalline solid used chiefly as a pigment in paints, rubber, and plastics.
Pollution occurs when an amount of any substance or any form of energy is put into the environment at a rate faster than it can be dispersed or safely stored. The term pollution can refer to both artificial and natural materials that are created, consumed, and discarded in an unsustainable manner.
Pollution can be reduced through processes such as recycling and the proper treatment of water and toxic waste. The reduction of corporate fossil fuel extraction is another way to counter air pollution. According to the Carbon Majors Report prepared by the Carbon Disclosure Project in 2017, more than 70 percent of greenhouse gas emissions comes from only 100 companies.
pollution, the addition of any substance (solid, liquid, or gas) or any form of energy (such as heat, sound, or radioactivity) to the environment at a rate faster than it can be dispersed, diluted, decomposed, recycled, or stored in some harmless form. The major kinds of pollution, usually classified by environment, are air pollution, water pollution, and land pollution. Modern society is also concerned about specific types of pollutants, such as noise pollution, light pollution, and plastic pollution. Pollution of all kinds can have negative effects on the environment and wildlife and often impacts human health and well-being.
History of pollution
pollutionThe major kinds of pollution, usually classified by environment, are air pollution, water pollution, and land pollution. Modern society is also concerned about specific types of pollutants, such as noise pollution, thermal pollution, light pollution, and plastic pollution.
Although environmental pollution can be caused by natural events such as forest fires and active volcanoes, use of the word pollution generally implies that the contaminants have an anthropogenic source—that is, a source created by human activities. Pollution has accompanied humankind ever since groups of people first congregated and remained for a long time in any one place. Indeed, ancient human settlements are frequently recognized by their wastes—shell mounds and rubble heaps, for instance. Pollution was not a serious problem as long as there was enough space available for each individual or group. However, with the establishment of permanent settlements by great numbers of people, pollution became a problem, and it has remained one ever since.
Cities of ancient times were often noxious places, fouled by human wastes and debris. Beginning about 1000 ce, the use of coal for fuel caused considerable air pollution, and the conversion of coal to coke for iron smelting beginning in the 17th century exacerbated the problem. In Europe, from the Middle Ages well into the early modern era, unsanitary urban conditions favoured the outbreak of population-decimating epidemics of disease, from plague to cholera and typhoid fever. Through the 19th century, water and air pollution and the accumulation of solid wastes were largely problems of congested urban areas. But, with the rapid spread of industrialization and the growth of the human population to unprecedented levels, pollution became a universal problem.
Exxon Valdez oil spill: cleanupWorkers steaming blast rocks covered in crude oil leaking from the Exxon Valdez, an oil tanker that ran aground in Prince William Sound, Alaska, U.S.
By the middle of the 20th century, an awareness of the need to protect air, water, and land environments from pollution had developed among the general public. In particular, the publication in 1962 of Rachel Carson’s book Silent Spring focused attention on environmental damage caused by improper use of pesticides such as DDT and other persistent chemicals that accumulate in the food chain and disrupt the natural balance of ecosystems on a wide scale. In response, major pieces of environmental legislation, such as the Clean Air Act (1970) and the Clean Water Act (1972; United States), were passed in many countries to control and mitigate environmental pollution.
Major types of pollution explainedLearn more about the major kinds of pollution in this infographic explainer.
Giving voice to the growing conviction of most of the scientific community about the reality of anthropogenic global warming, the Intergovernmental Panel on Climate Change (IPCC) was formed in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Program (UNEP) to help address greenhouse gas emissions. An IPCC special report produced in 2018 noted that human beings and human activities have been responsible for a worldwide average temperature increase between 0.8 and 1.2 °C (1.4 and 2.2 °F) since preindustrial times, and most of the warming over the second half of the 20th century could be attributed to human activities, particularly the burning of fossil fuels.
Our editors will review what you’ve submitted and determine whether to revise the article.
print
Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.
Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
The Editors of Encyclopaedia Britannica. "mercury". Encyclopedia Britannica, 26 Mar. 2025, https://www.britannica.com/science/mercury-chemical-element. Accessed 11 April 2025.
Our editors will review what you’ve submitted and determine whether to revise the article.
print
Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.
Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Nathanson, Jerry A.. "pollution". Encyclopedia Britannica, 18 Aug. 2024, https://www.britannica.com/science/pollution-environment. Accessed 11 April 2025.