metal, any of a class of substances characterized by high electrical and thermal conductivity as well as by malleability, ductility, and high reflectivity of light.

Approximately three-quarters of all known chemical elements are metals. The most abundant varieties in the Earth’s crust are aluminum, iron, calcium, sodium, potassium, and magnesium. The vast majority of metals are found in ores (mineral-bearing substances), but a few such as copper, gold, platinum, and silver frequently occur in the free state because they do not readily react with other elements.

Metals are usually crystalline solids. In most cases, they have a relatively simple crystal structure distinguished by a close packing of atoms and a high degree of symmetry. Typically, the atoms of metals contain less than half the full complement of electrons in their outermost shell. Because of this characteristic, metals tend not to form compounds with each other. They do, however, combine more readily with nonmetals (e.g., oxygen and sulfur), which generally have more than half the maximum number of valence electrons. Metals differ widely in their chemical reactivity. The most reactive include lithium, potassium, and radium, whereas those of low reactivity are gold, silver, palladium, and platinum.

Periodic Table of the elements concept image (chemistry)
Britannica Quiz
Facts You Should Know: The Periodic Table Quiz

The high electrical and thermal conductivities of the simple metals (i.e., the non-transition metals of the periodic table) are best explained by reference to the free-electron theory. According to this concept, the individual atoms in such metals have lost their valence electrons to the entire solid, and these free electrons that give rise to conductivity move as a group throughout the solid. In the case of the more complex metals (i.e., the transition elements), conductivities are better explained by the band theory, which takes into account not only the presence of free electrons but also their interaction with so-called d electrons.

The mechanical properties of metals, such as hardness, ability to resist repeated stressing (fatigue strength), ductility, and malleability, are often attributed to defects or imperfections in their crystal structure. The absence of a layer of atoms in its densely packed structure, for example, enables a metal to deform plastically, and prevents it from being brittle.

The Editors of Encyclopaedia BritannicaThis article was most recently revised and updated by Barbara A. Schreiber.

alloy, metallic substance composed of two or more elements, as either a compound or a solution. The components of alloys are ordinarily themselves metals, though carbon, a nonmetal, is an essential constituent of steel.

Alloys are usually produced by melting the mixture of ingredients. The value of alloys was discovered in very ancient times; brass (copper and zinc) and bronze (copper and tin) were especially important. Today, the most important are the alloy steels, broadly defined as steels containing significant amounts of elements other than iron and carbon. The principal alloying elements for steel are chromium, nickel, manganese, molybdenum, silicon, tungsten, vanadium, and boron. Alloy steels have a wide range of special properties, such as hardness, toughness, corrosion resistance, magnetizability, and ductility. Nonferrous alloys, mainly copper–nickel, bronze, and aluminum alloys, are much used in coinage. The distinction between an alloying metal and an impurity is sometimes subtle; in aluminum, for example, silicon may be considered an impurity or a valuable component, depending on the application, because silicon adds strength though it reduces corrosion resistance.

The term fusible metals, or fusible alloys, denotes a group of alloys that have melting points below that of tin (232° C, 449° F). Most of these substances are mixtures of metals that by themselves have low melting points, such as tin, bismuth, and lead. Fusible alloys are used as solder, in safety sprinklers that automatically spray out water when the heat of a fire melts the alloy, and in fuses for interrupting an electrical circuit when the current becomes excessive.

Periodic Table of the elements concept image (chemistry)
Britannica Quiz
Facts You Should Know: The Periodic Table Quiz

Many fusible alloys are formulated to melt at 90–100° C (194–212° F); for example, Darcet’s alloy (50 parts bismuth, 25 lead, 25 tin) melts at 98° C. By replacing half the tin in Darcet’s alloy with cadmium, the alloy Wood’s metal, which melts at 70° C, is obtained. See also amalgam; ferroalloy; intermetallic compound.

The Editors of Encyclopaedia Britannica This article was most recently revised and updated by Adam Augustyn.