Composition and properties of natural gas

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: methane gas, natural methane gas
Also called:
methane gas or natural methane gas

Hydrocarbon content

Natural gas is a hydrocarbon mixture consisting primarily of saturated light paraffins such as methane and ethane, both of which are gaseous under atmospheric conditions. The mixture also may contain other hydrocarbons, such as propane, butane, pentane, and hexane. In natural gas reservoirs even the heavier hydrocarbons occur for the most part in gaseous form because of the higher pressures. They usually liquefy at the surface (at atmospheric pressure) and are produced separately as natural gas liquids (NGLs), either in field separators or in gas processing plants. Once separated from the gas stream, the NGLs can be further separated into fractions, ranging from the heaviest condensates (hexanes, pentanes, and butanes) through liquefied petroleum gas (LPG; essentially butane and propane) to ethane. This source of light hydrocarbons is especially prominent in the United States, where natural gas processing provides a major portion of the ethane feedstock for olefin manufacture and the LPG for heating and commercial purposes.

Nonhydrocarbon content

Other gases that commonly occur in association with the hydrocarbon gases are nitrogen, carbon dioxide, hydrogen, and such noble gases as helium and argon. Nitrogen and carbon dioxide are noncombustible and may be found in substantial proportions. Nitrogen is inert, but, if present in significant amounts, it reduces the heating value of the mixture; it must therefore be removed before the gas is suitable for the commercial market. Carbon dioxide is removed in order to raise heating value, reduce volume, and sustain even combustion properties.

Often natural gases contain substantial quantities of hydrogen sulfide or other organic sulfur compounds. In this case, the gas is known as “sour gas.” Sulfur compounds are removed in processing, as they are toxic when breathed, are corrosive to plant and pipeline facilities, and are serious pollutants if burned in products made from sour gas. However, after sulfur removal a minute quantity of a noxious mercaptan odorant is always added to commercial natural gas in order to ensure the rapid detection of any leakage that may occur in transport or use.

Because natural gas and formation water occur together in the reservoir, gas recovered from a well contains water vapour, which is partially condensed during transmission to the processing plant.

Thermal and physical properties

Commercial natural gas stripped of NGL and sold for heating purposes usually contains 85 to 90 percent methane, with the remainder mainly nitrogen and ethane. It usually has a calorific, or heating, value of approximately 38 megajoules (MJ; million joules) per cubic metre or about 1,050 British thermal units (BTUs) per cubic foot of gas.

Methane is colourless, odourless, and highly flammable. However, some of the associated gases in natural gas, especially hydrogen sulfide, have a distinct and penetrating odour, and a few parts per million are sufficient to impart a decided odour to natural gas.

Processing and transport of natural gas

Measurement systems

The amounts of gas accumulated in a reservoir, as well as produced from wells and transported through pipelines, are measured by volume, calculated in either cubic metres or cubic feet. The calculations are made with reference to the volume occupied by the gas at standard atmospheric pressure (i.e., 760 mm of mercury, or 14.7 pounds per square inch) and at a temperature of 15 °C (60 °F). Since gas in the reservoir is compressed by the high pressures exerted underground, it expands upon reaching the surface and thus occupies more space. However, since its volume is calculated in reference to standard conditions of temperature and pressure, this expansion does not constitute an increase in the amount of gas produced. Natural gas reserves are usually measured in billions and trillions of cubic metres (bcm and tcm) or in billions and trillions of cubic feet (bcf and tcf). Volumes produced on a daily basis at wells are frequently measured in thousands and millions of cubic metres (Mcm and MMcm) or in thousands and millions of cubic feet (Mcf and MMcf). By tradition the natural gas industry uses the Roman numeral M to designate 1,000 and MM (1,000 × 1,000) to denote one million.

On the market, natural gas is usually bought and sold not by volume but by calorific value, noted above as approximately 38 MJ per cubic metre or about 1,050 BTUs per cubic foot. These units are frequently abbreviated as MJ/m3 and BTU/ft3. In practice, purchases of natural gas are usually denoted in much larger units, such as GJ (gigajoules, billions of joules) and MMBTUs (millions of BTUs).

In the British Imperial system, 1 MMBTU is conveniently equivalent to roughly 1,000 cubic feet of natural gas. Another unit frequently used is the therm, which is equivalent to 100,000 BTUs or roughly 100 cubic feet of gas. The price of natural gas is frequently cited per therm, per MMBTU, or per GJ.