permittivity, constant of proportionality that relates the electric field in a material to the electric displacement in that material. It characterizes the tendency of the atomic charge in an insulating material to distort in the presence of an electric field. The larger the tendency for charge distortion (also called electric polarization), the larger the value of the permittivity.

The permittivity of an insulating, or dielectric, material is commonly symbolized by the Greek letter epsilon, ε; the permittivity of a vacuum, or free space, is symbolized ε0; and their ratio ε/ε0, called the dielectric constant (q.v.), is symbolized by the Greek letter kappa, κ.

In the rationalized metre-kilogram-second (mks) and SI systems, the magnitude of the permittivity of a vacuum ε0 is 8.854 × 10−12. Its units and those of permittivity ε are square coulombs per newton square metre. In the mks system, permittivity ε and the dimensionless dielectric constant κ are formally distinct and related by the permittivity of free space ε0; ε = κε0. In the centimetre-gram-second (cgs) system, the value of the permittivity of free space ε0 is chosen arbitrarily to be 1. Thus, the permittivity ε and the dielectric constant κ in the cgs system are identical; both of them are dimensionless numbers.

battery. Illustration of battery connected to lightbulb. Power a light bulb with a battery. Battery, Power Supply, Science, Circuit, Currents
Britannica Quiz
Electricity: Short Circuits & Direct Currents
This article was most recently revised and updated by William L. Hosch.

dielectric constant

physics
Also known as: relative permittivity, specific inductive capacity
Also called:
relative permittivity or specific inductive capacity

dielectric constant, property of an electrical insulating material (a dielectric) equal to the ratio of the capacitance of a capacitor filled with the given material to the capacitance of an identical capacitor in a vacuum without the dielectric material. The insertion of a dielectric between the plates of, say, a parallel-plate capacitor always increases its capacitance, or ability to store opposite charges on each plate, compared with this ability when the plates are separated by a vacuum. If C is the value of the capacitance of a capacitor filled with a given dielectric and C0 is the capacitance of an identical capacitor in a vacuum, the dielectric constant, symbolized by the Greek letter kappa, κ, is simply expressed as κ = C/C0. The dielectric constant is a number without dimensions. In the centimetre-gram-second system, the dielectric constant is identical to the permittivity. It denotes a large-scale property of dielectrics without specifying the electrical behaviour on the atomic scale.

The value of the static dielectric constant of any material is always greater than one, its value for a vacuum. The value of the dielectric constant at room temperature (25 °C, or 77 °F) is 1.00059 for air, 2.25 for paraffin, 78.2 for water, and about 2,000 for barium titanate (BaTiO3) when the electric field is applied perpendicularly to the principal axis of the crystal. Because the value of the dielectric constant for air is nearly the same as that for a vacuum, for all practical purposes air does not increase the capacitance of a capacitor. Dielectric constants of liquids and solids may be determined by comparing the value of the capacitance when the dielectric is in place to its value when the capacitor is filled with air.

The Editors of Encyclopaedia Britannica This article was most recently revised and updated by Erik Gregersen.