- Key People:
- Prospero Alpini
Because the study of mechanisms of pollination began in Europe, where pollinating birds are rare, their importance is often underestimated. In fact, in the tropics and the southern temperate zones, birds are at least as important as pollinators as insects are, perhaps more so. About a third of the 300 families of flowering plants have at least some members with ornithophilous (“bird-loving”) flowers—i.e., flowers attractive to birds. Conversely, about 2,000 species of birds, belonging to 50 or more families, visit flowers more or less regularly to feed on nectar, pollen, and flower-inhabiting insects or spiders. Special adaptations to this way of life, in the form of slender, sometimes curved, beaks and tongues provided with brushes or shaped into tubes, are found in over 1,600 species of eight families: hummingbirds, sunbirds (see The Rodent That Acts Like a Hippo and Other Examples of Convergent Evolution), honeyeaters, brush-tongued parrots, white-eyes, flower-peckers, honeycreepers (or sugarbirds), and Hawaiian honeycreepers such as the iiwi. Generally, the sense of smell in birds is poorly developed and not used in their quest for food; instead, they rely on their powerful vision and their color sense, which resembles that of human (ultraviolet not being seen as a color, whereas red is). Furthermore, the sensitivity of the bird’s eye is greatest in the middle and red part of the spectrum. This is sometimes ascribed to the presence in the retina of orange-red drops of oil, which together may act as a light filter.
Although other explanations have been forwarded, the special red sensitivity of the bird eye is usually thought to be the reason why so many bird-pollinated flowers are of a uniform, pure red color. Combinations of complementary colors, such as orange and blue, or green and red, also are found, as are white flowers. As might be expected, bird flowers generally lack smell and are open in the daytime; they are bigger than most insect flowers and have a wider floral tube. Bird flowers also are sturdily constructed as a protection against the probing bill of the visitors, with the ovules kept out of harm’s way in an inferior ovary beneath the floral chamber or placed at the end of a special stalk or behind a screen formed by the fused bases of the stamens. The latter, often so strong as to resemble metal wire, are usually numerous, brightly colored, and protruding, so that they touch a visiting bird on the breast or head as it feeds. The pollen grains often stick together in clumps or chains, with the result that a single visit may result in the fertilization of hundreds of ovules.
In the Americas, where hummingbirds usually suck the nectar of flowers on the wing, ornithophilous flowers (e.g., fuchsias) are often pendant and radially symmetrical, lacking the landing platform of the typical bee flower. In Africa and Asia, bird flowers often are erect and do offer their visitors, which do not hover, either a landing platform or special perches in the form of small twigs near the flower . Pollinating birds are bigger than insects and have a very high rate of metabolism. Although some hummingbirds go into a state resembling hibernation every night, curtailing their metabolism drastically, others keep late hours. Thus, in general, birds need much more nectar per individual than insects do. Accordingly, bird flowers produce nectar copiously—a thimbleful in each flower of the coral tree, for example, and as much as a liqueur glassful in flowers of the spear lily (Doryanthus). Plants bearing typical bird flowers are cardinal flower, fuchsia, red columbine, trumpet vine, hibiscus, strelitzia, and eucalyptus, and many members of the pea, orchid, cactus, and pineapple families.
Mammals
In Madagascar, the mouse lemurs (Microcebus), which are only ten centimeters (four inches) long, obtain food from flowers, and in Australia the diminutive marsupial honey possums and pygmy possums also are flower specialists. Certain highly specialized tropical bats, particularly Macroglossus and Glossophaga, also obtain most or all of their food from flowers. The Macroglossus (big-tongued) species of southern Asia and the Pacific are small bats with sharp snouts and long, extensible tongues, which carry special projections (papillae) and sometimes a brushlike tip for picking up a sticky mixture of nectar and pollen. Significantly, they are almost toothless. Color sense and that sonar sense so prominent in other bats, seem to be lacking. Their eyesight is keen but, since they feed at night, they are probably guided to the flowers principally by their highly developed sense of smell. The bats hook themselves into the petals with their thumb claws and stick their slender heads into the flowers, extracting viscid nectar and protein-rich pollen with their tongues.
The plants that utilize bat pollination have, in the process of evolution, responded to the winged mammals by producing large (sometimes huge) amounts of nectar and pollen foods. One balsa-tree flower, for example, may contain a full 10 grams (0.3 ounce) of nectar, and one flower from a baobab tree has about 2,000 pollen-producing stamens. Some bat flowers also provide succulent petals or special food bodies to their visitors. Another striking adaptation is that the flowers are often placed on the main trunk or the big limbs of a tree (cauliflory); or, borne on thin, ropelike branches, they dangle beneath the crown (flagelliflory). The pagoda shape of the kapok tree serves the same purpose: facilitation of the bat’s approach. Characteristics of the flowers themselves include drab color, large size, sturdiness, bell-shape with wide mouth and, frequently, a powerful rancid or urinelike smell. The giant saguaro cactus and the century plant (Agave) are pollinated by bats, although not exclusively, and cup-and-saucer vine (Cobaea scandens) is the direct descendant of a bat-pollinated American plant. Calabash, candle tree, and areca palm also have bat-pollinated flowers.
Water
Although pollen grains can be made to germinate in aqueous sugar solutions, water alone in most cases has a disastrous effect on them. Accordingly, only a very few terrestrial plants, such as the bog asphodel of the Faroes, use rainwater as a means of pollen transport. Even in aquatic plants, water is seldom the true medium of pollen dispersal. Thus, the famous Podostemonaceae, plants that grow only on rocks in rushing water, flower in the dry season when the plants are exposed; pollination occurs with the aid of wind or insects or by selfing. Another aquatic plant, ribbon weed, sends its male and female flowers to the surface separately. There, the former transform themselves into minute sailboats, which are driven by the wind until they collide with the female flowers. In the Canadian waterweed, and also in pondweed (Potamogeton) and ditch grass (Ruppia), the pollen itself is dispersed on the water’s surface; it is, however, still water-repellent. True water dispersal (hydrophily), in which the pollen grains are wet by water, is found only in the hornworts and eelgrasses.