Ecology

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://www.britannica.com/science/protist
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: Protista, Protoctista, unicellular organism

The distribution of protists is worldwide; as a group, these organisms are both cosmopolitan and ubiquitous. Every individual species, however, has preferred niches and microhabitats, and all protists are to some degree sensitive to changes in their surroundings. The availability of sufficient nutrients and water, as well as sunlight for photosynthetic forms, is, however, the only major factor restraining successful and heavy protist colonization of practically any habitat on Earth.

Free-living forms are particularly abundant in natural aquatic systems, such as ponds, streams, rivers, lakes, bays, seas, and oceans. Certain of these forms may occur at specific levels in the water column, or they may be bottom-dwellers (benthic). More specialized, sometimes human-made, habitats are also often well populated by both pigmented and nonpigmented protists. Such sites include thermal springs, briny pools, cave waters, snow and ice, beach sands and intertidal mud flats, bogs and marshes, swimming pools, and sewage treatment plants. Many are commonly found in various terrestrial habitats, such as soils, forest litter, desert sands, and the bark and leaves of trees. Cysts and spores may be recovered from considerable heights in the atmosphere.

Fossilized forms are plentiful in the geologic record. Fossils of unicellular organisms have been found in strata dated to about 1.9 billion years ago, during the Precambrian. Many lineages of protists have left no record of their now extinct forms, however, making speculation about early phylogenetic and evolutionary relationships with other eukaryotes difficult to verify.

Symbiotic protists are as widespread as free-living forms, since they occur everywhere their hosts are to be found. Hundreds or even thousands of kinds of protists live as ectosymbionts or episymbionts, finding suitable niches with plants, fungi, vertebrate and invertebrate animals, or even other protists. Seldom are the hosts harmed; in fact, these often mobile substrates are actually used as a means of dispersal.

Endosymbionts include commensals, facultative parasites, and obligate parasites; the latter category embraces forms that have effects on their hosts ranging from mild discomfort to death. Protozoan and certainly nonphotosynthetic protists are implicated far more often in such associations than are algal forms. In a few protists, both cytoplasm and nuclei can be invaded by other protists, and intimate, mutually beneficial relationships between protistan hosts and protistan symbionts have been seen, such as foraminiferans or ciliates that nourish symbiotic algae in their cytoplasm. When higher eukaryotes are hosts to protists, all body cavities and organ systems are susceptible to invasion, although terrestrial plants bear relatively few such parasites. In animal hosts, the three principal areas serving as sites for endosymbiotic species are the coelom, the digestive tract and its associated organs, and the circulatory system.

The numbers of individuals in populations of many protists reach staggering figures. There are, on the average, tens of thousands of protists in a gram of arable soil, hundreds of thousands in the gut of a termite, millions in the rumen of a bovine mammal, billions in a tiny patch of floating plankton in the sea, and trillions in the bloodstream of a person infected with severe malaria. Some severe diseases of humans are caused by protists, primarily blood parasites. Malaria, trypanosomiasis (e.g., African sleeping sickness), leishmaniasis, toxoplasmosis, and amoebic dysentery are debilitating or fatal afflictions.

Protist parasites infecting domesticated livestock, poultry, hatchery fishes, and other such food sources deplete supplies or render them unpalatable. The economic losses can be considerable. Certain free-living marine dinoflagellates are the causative agents of the so-called red tide outbreaks that occur periodically along coasts throughout the world; a toxin released by the blooming protists kills fishes in the affected area. Other dinoflagellates produce a toxin that may be taken up by certain shellfish (bivalve mollusks) and that causes shellfish poisoning, characterized in severe cases by respiratory paralysis and death, when the mollusk is eaten by humans. Some of the “lower” fungal protists have had significant effects on human history. One species was responsible for the great Irish potato famine of the mid-19th century, and later, another nearly ruined the entire French wine industry before a fungicide was developed to destroy it.

Many protists provide humans with benefits, some more obvious than others. Because protists are located near the bottom of the food chain in nature (just above the bacteria), they serve a crucial role in sustaining the higher eukaryotes in fresh and marine waters. In addition to directly and indirectly supplying organic molecules (such as sugars) for other organisms, the pigmented (chlorophyll-containing) algal protists produce oxygen as a by-product of photosynthesis. Algae may supply up to half of the net global oxygen. Deposits of natural gas and crude oil are derived from fossilized populations of algal protists. Much of the nutrient turnover and mineral recycling in the oceans and seas comes from the activities of the heterotrophic (nonpigmented) flagellates and the ciliates living there, species that feed on the bacteria and other primary producers present in the same milieu. Seaweeds (e.g., brown algae) have long been used as fertilizers.

The calcareous test, or shell, of the foraminiferans is preservable and constitutes a major component of limestone rocks. Assemblages of certain of these protists, which are abundant and usually easily recognized, are known to have been deposited during various specific periods in Earth’s geologic history. Geologists in the petroleum industry study foraminiferan species present in samples of drilled cores in order to determine the age of different strata in Earth’s crust, thus making possible the identification of rich oil deposits. Before synthetic substitutes, blackboard chalk consisted mostly of calcium carbonate derived from the scales (coccoliths) of certain algal protists and from the tests of foraminiferans. Diatoms and some ciliate species are useful as indicators of water quality and therefore of the amount of pollution in natural aquatic systems and in sewage purification plants. Selected species of parasitic protozoans may play a significant role as biological control organisms against certain insect predators of food plants.

Protists have been used as model cells in laboratory research, some of which is directed against major human diseases. The combination of characteristics that has made them superior to both prokaryotic cells and other eukaryotic cells includes their easy availability and maintenance, convenient size for handling in large numbers, short generation time, broad physiological adaptability, basic structural and functional similarity to the eukaryotic cells of animal organisms, and, most importantly for sophisticated work requiring purity of material and rigidity of controls, culturability (i.e., their successful growth axenically—free of other living organisms—and on chemically definable media). The culturability of some unicellular free-living protists has made them invaluable as assay organisms and pharmacological tools. Among those that have proved to be useful this way, one of the most important is the ciliate Tetrahymena, which serves as a model cell in investigations in cell and molecular biology. The value of such work in areas such as biomedical and cancer research is potentially great.