Protists were a dominant form of life on Earth 1.5 billion years ago. While protozoans evolved early and have survived to the present day as unicellular organisms, they have undoubtedly undergone considerable evolutionary change. That many species must have become extinct as others appeared can be deduced from the limited fossil record of protozoans. Extinct fossil foraminiferan species, for example, number around 34,000, while there are only about 4,000 described living species.

Only a small number of protozoans, most of which are testate amoebae, have left fossil remains. The calcareous shells of the foraminiferans and calcium-secreting coccolithophores (a group of algae), for example, produced substantial geologic strata in the chalk formed during the Cretaceous Period (145.5 million to 65.5 million years ago) and the well-developed foram-limestones of the Paleozoic Era (542 million to 251 million years ago), Early Cretaceous Epoch (145.5 million to 99.6 million years ago), and Cenozoic Era (65.5 million years ago to the present). The fossil-forming radiolarians date to late Precambrian times, and the testate lobose amoeba Melanocyrillium dates to the late Precambrian geologic record of the Grand Canyon in northwestern Arizona, U.S. The testate amoeba Nebela is found in deposits from the Cretaceous Period.

The most abundant and important fossil protozoans are the foraminiferans. This entirely marine group is extremely important as stratigraphic markers in oil exploration. Because species have appeared and then become extinct frequently during geologic history and because they have fairly wide geographic distribution, particularly planktonic species, their value is in showing distinct phases in geologic history and, with specific species, in typifying particular beds of rock or strata. Foraminiferans are also important in the reconstruction of paleoceanographic circulation patterns.

The poor fossil record of protozoans has hampered attempts at unraveling the complexities of their evolution. Modern biochemical and electron microscopy techniques, however, are providing evidence for new affinities between groups and are elucidating possible evolutionary pathways. Comparisons of flagellar structures, mitochondria, and nuclear and plastid characteristics in conjunction with ribosomal RNA (ribonucleic acid) sequences are revealing the relationships of various taxa.

The ancestral eukaryote organism is thought to have been an amoeboid creature that relied on anaerobic or microaerophilic metabolism (microaerophilic organisms survive on only very small amounts of oxygen). The evolution of mitochondria (the centres of aerobic respiration in the cell) as organelles from endosymbiotic bacteria and the establishment of oxidative pathways allowed a more efficient cellular energy balance, which led the way to the evolution of an enormously diverse array of eukaryotic organisms. Some of the early amoeboid eukaryotes developed flagella to enhance their food-gathering abilities and to provide a more efficient mode of propulsion. The flagellates gradually evolved different ways of life, and their structures became modified accordingly. As phagotrophs that ingested bacteria for food, they in some cases came to establish symbiotic associations with photosynthetic species, and ultimately the endosymbionts became plastids within the cell. Some of the flagellates came to depend entirely on photosynthesis and to abandon heterotrophy completely, though many still retain both heterotrophic and autotrophic nutrition as mixotrophs. (Some present-day mixotrophs, however, may be only secondarily mixotrophic, having reestablished heterotrophy in conjunction with photosynthesis.)

A considerable number of protozoans became parasitic, a mode of life that evolved independently among the protozoans many times. Ciliates and amoebae became symbionts in the intestinal tracts of both vertebrates and invertebrates as a result of surviving the digestive enzymes of the predator. (Most present-day parasites among these protists are intestinal parasites.) Once inside the intestine of the host, they multiplied and gradually, through mutation and selection, came to rely on the resistant cyst as a means of survival and dispersal, losing the ability to survive in a free-living feeding form.

The process of parasitism probably arose in several independent cases. The trypanosomes, for example, evolved from free-living forms, adapting to life in the alimentary canal of primitive invertebrates during late Precambrian times (570 million years ago). They evolved with their hosts, becoming symbionts in a wide variety of invertebrates, including annelids, nematodes, and mollusks. It was in the insects, however, that they underwent their most extensive evolutionary explosion into two groups. At this stage they were transmitted from insect to insect by resistant cysts passed in the feces and ingested by subsequent hosts. When insects developed the habit of sucking vertebrate blood, which is believed to have occurred about 40 million years ago, the protozoan symbionts that lived in the gut entered the blood of vertebrates, probably as feces left by the insect were rubbed into the wound. The blood provided a rich environment for the flagellates and thus evolved the two-host life cycles seen today in the Leishmania and Trypanosoma groups.

The apicomplexans, which also inhabit the blood of vertebrates at some stage in their life cycle, probably evolved from a basal primitive stock seen today as the gregarines, which are parasites of invertebrates. They gave rise to a group of parasitic organisms of which the coccidia, with a one-host life cycle, are primitive survivors. At first these protozoans lived in the gut of their vertebrate host, but they gradually began invading host tissues and eventually became adapted to spending part of their life cycle in the bloodstream. There they were taken up by blood-feeding insects, and an insect vector host became incorporated into the life cycle. Associated modifications in the reproductive pattern, as seen in Plasmodium, which belongs to the Haemosporina, also occurred. This series of events appears to have happened at least twice in the evolution of apicomplexan life cycles.

Julia M. Diaz Johanna E.M. Laybourn-Parry

Classification

General principles

A fundamental shift in protozoan taxonomy occurred in 1990, when American microbiologist Carl Woese and colleagues revolutionized the world of biology with the three-domain classification system of life. Based on sequences of rRNA (ribosomal RNA), molecules present in all organisms as part of the protein-manufacturing machinery, Woese’s classification system revealed three major evolutionary groups of life on Earth, one of which is eukaryotic (the Eukarya) and two of which are prokaryotic (Eubacteria and Archaea). It is generally accepted that the Eubacteria (now Bacteria) are the most distant genetic group of the three. The three-domain system has largely replaced the previous five-kingdom system of American biologist Robert H. Whittaker, which is based on morphology (e.g., mode of nutrition) rather than phylogeny (the history of the evolution of a species or group).

Classification within the domain Eukarya also experienced a shift from morphology-based approaches to an emphasis on phylogenetic relationships. On the basis of that advance, the former eukaryotic kingdoms Animalia, Plantae, and Fungi are no longer separated from protists. Instead, each of those major groups of multicellular life is classified within a supergroup of Eukarya along with a protistan group. For example, plants are classified within the supergroup Archaeplastida, alongside some examples of unicellular algae, and the animals and fungi are classified within the supergroup Opisthokonta, along with single-celled choanoflagellates.

Current scientific approaches have produced a nested yet nonhierarchical picture of biological classification, in stark contrast to the heirarchical scheme of Linnean taxonomy, which specifies somewhat arbitrary universal ranks of classification (e.g., Kingdom, Phylum, Class, Order). This development has caused many biologists to abandon the Linnean system, primarily at the higher levels of classification, rather than at the genus and species levels. The validity and utility of the Linnean taxonomic approach continues to be a source of debate among biologists. Major developments in the classification of protists in the 1990s and early 2000s did not use hierarchical schemes.

Protistan systematics remains a subject of debate and change. Protists comprise a large and sometimes unwieldy assemblage, and assignments of species to particular taxa change as new genomic approaches, biochemical techniques, and electron microscopy studies provide more details on the affinities of various species.

Diagnostic features

A general consensus regarding the classification of eukaryotes (with emphasis on protists) was published by the International Society of Protistologists (ISOP) in 2005. This classification system of eukaryotic taxa divides species into monophyletic groups, or clades. Monophyletic groups contain a common ancestor and all its descendants. This type of grouping is in contrast to paraphyletic groupings (consisting of a common ancestor and some of its descendants) and polyphyletic groupings (consisting of taxa that do not share a common ancestor). Monophyletic groups are defined by the possession of shared, derived traits known as apomorphies.

The classification scheme introduced by the ISOP defines six monophyletic supergroups of eukaryotes: Archaeplastida, Excavata, Chromalveolata, Amoebozoa, Rhizaria, and Opisthokonta. Using this scheme, the protozoans and algae are clearly polyphyletic. Former groupings defined by previous classification schemes are no longer recognized in the 2005 system, such as the former phylum Sarcomastigophora, which grouped paraphyletic lineages of photosynthetic and nonphotosynthetic taxa.

An annotated classification scheme of eukaryotes based on that developed by the ISOP is available below. The monophyletic groups of multicellular eukaryotes (plants, animals, and fungi) are identified in the scheme but are not discussed beyond their broadest group of classification. Because protozoans are scattered throughout the eukaryote supergroups, often in close phylogenetic relationship to algae, the annotated classification scheme includes detailed descriptions of both protozoans and algae. After the name of each clade, a summary of the clade’s features is given, with emphasis on the unifying and apomorphic characteristics, if present. The classification of protists generally continues to be debated. Entries in this annotated classification scheme have been adapted or adopted directly from the definitive ISOP 2005 publication.

Annotated classification

  • Archaeplastida
    Consists mostly of photosynthetic algae; evolved from a heterotrophic ancestor that acquired a plastid via primary endosymbiosis of a cyanobacterium; this ancestor may be common to all groups within Archaeplastida, or multiple endosymbiotic events may have occurred. Only known lineage with primary plastids until 2005, when the amoebozoan Paulinella chromatophora was discovered to possess primary plastids. Plastids are surrounded by 2 membranes. Few members use secondarily derived heterotrophy; monophyletic Plantae arose from an archaeplastidan ancestor and are therefore classified in this group.
    • Glaucophyta
      Found in fresh water. Contain blue-green plastids called cyanelles; between the 2 membranes surrounding cyanelles are remnants of cyanobacterial peptidoglycan. Motile cells have 2 flagella inserted subapically into a slight depression, and both flagella possess non-tubular hairs. Periplast of vesicles forms a cell covering just beneath plasma membrane; some vesicles contain scales.
    • Rhodophyceae (red algae)
      Consists of 2 subgroups, the polyphyletic bangiophyceans and the monophyletic florideophyceans. No motile cells at any time during life cycle, which is exceedingly rare among protists. No plasmodesmata between cells, but distinctive pit plugs exist. Life cycles are alternate (biphasic or triphasic).
    • Chloroplastida (green algae)
      Store starch as grains inside plastids. Chlorophylls a and b and a characteristic suite of carotenoids, lutein (the major xanthophyll), violaxanthin, neoxanthin, and zeaxanthin are present in chloroplasts, similar to the chloroplasts of land plants; represent ancestral lineage of land plants.
  • Excavata
    Predominantly heterotrophic organisms possessing a distinctive suspension feeding groove (ventral cytostome) and a recurrent flagellum (often beats over cytostome with a slow undulating motion). Placement of Heterolobosea and Euglenozoa within Excavata remains a source of debate, due to confounding morphological and genetic evidence.
    • Fornicata
      Possess unique B fibre, a non-microtubular fibre, against 1 microtubular root.
      • Carpediemonas
        Biflagellated, free-living unicells with a broad cytostome containing a posterior-directed flagellum.
      • Eopharyngia
        Lack typical mitochondria; possess a single kinetid and nucleus.
        • Diplomonadida
          Binucleate with a duplicated flagellar apparatus; descendants are mononucleate and possess a single flagellar apparatus.
        • Retortamonadida
          Contain 2 genera that are unique on the basis of a nuclear papillum or “lapel,” which is connected to the flagellar apparatus; do not possess typical mitochondria.
    • Malawimonas
      Possess mitochondria, 2 kinetosomes, and a single ventral flagellar vane.
    • Parabasalia
      Possess a unique parabasal Golgi body; the 2 major parabasalid groups are the trichomonads and the hypermastigotes.
    • Preaxostyla
      • Oxymonadida
        Articulate axostyle, made of microtubules, is unique. Known only as symbionts of wood-digesting insects; some have a holdfast called a rostellum, used to attach to the insect gut.
      • Trimastix
        Free-living quadriflagellates with a broad cytostome containing a posterior-directed flagellum; mitochondria are replaced by small, dense organelles.
    • Jakobida
      Although not a unique characteristic, all jakobids possess tubular mitochondrial cristae and a multilayered structure associated with basal bodies. The jakobic mitochondrial genome is ancestral.
    • Euglenozoa
      Paraxial rod associated with at least 1 flagellum and 2 functional basal bodies, each with a corresponding flagellum; tubular extrusomes, analogous to alveolate ejectile organelles, and discoidal mitochondrial cristae similar to other groups of protists. Contains autotrophic and heterotrophic taxa. Positioned within Excavata on basis of genetic similarity, although the classification of euglenozoans remains a source of debate; the euglenozoans and heteroloboseans are closely related and often classified together in the taxon Discicristata.
      • Euglenida
        Pellicle strips convey a unique type of motility called euglenid metaboly; tubular extrusomes have been reduced to mucocysts between pellicle strips.
      • Kinetoplastea
        Contain a kinetoplast, a large and distinctive mass of DNA in the mitochondrion. The 2 major groups are the bodontids, which include free-living organisms, and the trypanosomes, a group of well-known parasites.
      • Diplonemea
        Heterotrophic; in vegetative phase, paraxial rods are absent.
    • Heterolobosea
      Many exhibit amoeboid, flagellated, and encysted forms. Pseudopodia are unique compared with those found in Amoebozoa. Many are heterotrophic. Positioned within Excavata on basis of genetic similarity, although the classification of heteroloboseans remains a source of debate; euglenozoans and heteroloboseans are closely related and often classified together in the taxon Discicristata.
  • Chromalveolata
    All descended from a heterotrophic ancestor that acquired a red algal plastid by secondary endosymbiosis; plastid has been lost in some subgroups, such as the ciliates. Many are heterotrophic. In the autotrophic groups, chlorophyll c is usually present.
    • Alveolata
      Alveolar sacs (alveolae) present beneath the plasma membrane and may contain rigid material (such as glucose) that confers a distinctive texture to the surface of the cell. Transverse (equatorial) cell division. Mitochondrial cristae are tubular.
      • Ciliophora
        Ciliated. Possess a special type of flagellar apparatus called the kinetid that has been duplicated many times in this group. Ciliates possess a unique form of nuclear dimorphism involving a diploid micronucleus and a polyploid macronucleus.
      • Dinozoa (dinoflagellates)
        Longitudinal flagellum and transverse flagellum attached to the plasma membrane to produce an undulating membrane. Express a spiraling motility. Mesokaryotic genome organization, halfway between prokaryotic and eukaryotic (i.e., chromosomes lack histones, are permanently condensed, and are connected to produce a nuclear reticulum).
      • Apicomplexa
        Parasitic; apical complex is a unique feature and is involved in host colonization.
    • Haptophyta
      Photosynthetic. Possess a unique flagellar structure called a haptonema, a “3rd flagellum,” located between the 2 regular flagella, that is thought to function in feeding (usually mixotrophic); haptonema is missing or reduced in some taxa. Organic scales are Golgi-derived and made partly of cellulose; cellulose production by the Golgi body is unique to this group. Major subgroups are the pavlovalean clade, the coccolithophores (which produce calcium carbonate scales, or coccoliths), and the Prymnesiales clade.
    • Cryptophyceae
      Motile unicells. Usually autotrophic, though some are heterotrophic or mixotrophic. Within periplastidal space is a nucleomorph, a degenerate vestigial nucleus acquired along with the plastid, in addition to starch storage products. Flagella are inserted in a depression called a vestibulum and have stiff, bipartite tubular hairs.
    • Stramenopiles
      Group consists of 4 heterotrophic clades and 15 predominantly autotrophic clades and contains many examples of secondarily-derived heterotrophs; in autotrophic groups, fucoxanthin is the dominant accessory pigment. Apomorphic (derived) trait is the tubular tripartite flagellar hair construction, basal portion of which is attached to the axoneme and consists of a tubular shaft with 1 to 3 fine terminal hairs. Tubular mitochondrial cristae.
      • Labyrinthulomycetes
        Absorptive heterotrophs, living within ectoplasmic membranes.
      • Peronosporomycetes
        Absorptive heterotrophs. Develop coenocytic (multinucleate) hyphae. Diploid life cycle. Zoospores biflagellate and heterokont (with the anteriorly directed flagellum shorter), rarely uniflagellate. Kinetid base structure has 6 parts, including 4 roots. Reproduction is oogamous; thallus is mainly aseptate. Cell wall composed of glucan-cellulose and may contain minor amounts of chitin.
      • Bicosoecida
        Small, biflagellate unicellular ingestive heterotrophs. Lack plastids; phagotrophic with the cytostome supported by broad microtubular rootlet. Cells often attached to surfaces by the posterior flagellum. Most live in loricae. Includes marine and freshwater taxa. May be solitary or colonial.
      • Hypochytriales
        Absorptive heterotrophs. Grow as chytridlike unicells; some also grow as hyphae. Typically parasitic or saprobic.
      • Chrysophyceae (golden algae)
        Most freshwater. Have a unique feeding cup. Mixotrophy common; some taxa are strictly phagotrophic heterotrophs. Algal taxa possess 1 or 2 plastids per cell. Stomatocysts (statospores) are produced by almost all species. Many have siliceous cell coverings.
      • Synurales
        Produce stomatocysts. Lack chlorophyll c2. Possess a unique flagellar root system.
      • Eustigmatales
        Small unicells that are coccoid (nonmotile) in the vegetative phase. Cells can be single, paired, or colonial. Lack fucoxanthin and are yellow-green in colour; lack chlorophyll c. Motile cells contain a prominent eyespot.
      • Pelagophyceae
        Group contains autotrophic, heterotrophic, and mixotrophic taxa. Most are marine and have a paraxial rod in the hairy flagellum. Silicoflagellates form a successful group of marine phytoplankton.
      • Raphidophyceae
        Flagellated unicells that possess peripherally aligned trichocysts and chloroplasts; some possess many plastids (20–100). Lack cell coverings. Form palmelloid and cyst stages.
      • Xanthophyceae
        Most found in fresh water and in soil. All taxa lack fucoxanthin.
      • Phaeophyceae (brown algae)
        Almost exclusively marine; includes many seaweeds. Common on rocky shores and most abundant in cold temperate waters, though also found in polar and tropical waters. Thallus types typically filamentous or parenchymatous. Laminarin is the photosynthetic storage product. Kelp and rockweeds are the 2 main groups.
      • Bacillariophyta (diatoms)
        Large group of successful autotrophic organisms, with some examples of secondarily derived heterotrophs. Produce a distinctive silica frustule, or shell, either centric (radial symmetry) or pennate (bilateral symmetry).
      • Actinophryidae (sun protozoans, or heliozoans)
        Radially oriented axonemal pseudopodia emerge from an amorphous centrosome. Mitochondrial cristae are tubular. Axopodia possess extrusomes.
      • Bolidomonas
        Naked unicellular flagellates. Outer chloroplast endoplasmic reticulum possesses a direct connection to the nuclear envelope; plastid DNA has a ring-type genophore. No eyespot or paraflagellar rod.
      • Dictyochophyceae
        Solitary or colonial flagellates or amoebae; cells may be naked, produce organic scales, or otherwise possess silica skeletons. Chloroplasts possess girdle lamella; plastid DNA has scattered granule-type genophore. Lack eyespots. Flagellated cells possess a paraflagellar rod.
      • Opalinata
        Multiple cilia with a double-stranded transitional helix at the region between kinetosome and cilium; “cilia” differ fundamentally in structure from true cilia. Usually binucleate or multinucleate, and nuclei are identical. Relatively large parasites of amphibians, reptiles, and fish.
      • Phaeothamniophyceae
        Filamentous, coccoid, capsoid, or palmelloid. Chloroplasts possess girdle lamella; chloroplast endoplasmic reticulum has a direct membrane connection to the nuclear envelope; plastid DNA has a ring-type genophore. Eyespots present. Flagellated cells have 2 flagella, the anteriorly directed flagellum with tripartite hairs.
      • Pinguiochrysidales
        Flagellated or coccoid; naked or enclosed in mineralized lorica. Chloroplasts have girdle lamella; chloroplast endoplasmic reticulum has a direct membrane connection to the nuclear envelope; plastid DNA has a granule-type genophore. Eyespots absent. 3 to 4 microtubular kinetosome roots and 1 large kinetosome root (rhizoplast).
      • Schizocladia
        Branched filaments during the vegetative phase. Cell wall contains alginates but lack cellulose and plasmodesmata. Anteriorly directed flagellum possesses tripartite mastigonemes, but the posteriorly directed flagellum is hairless. Microtubular and striated roots have not been described. Chloroplasts have girdle lamella; chloroplast endoplasmic reticulum has a direct membrane connection to the nuclear envelope; plastid DNA has a ring-type genophore. Eyespots present. Storage product is unknown.
  • Rhizaria
    Consist of amoebae and amoeboflagellates with thin pseudopods (filopods), often microtubule-reinforced; often live within tests. Filose pseudopods typically involved in prey capture and food selection.
    • Cercozoa
      Diverse clade. Tubular mitochondrial cristae. Cysts are common. Kinetosomes connect to nucleus with cytoskeleton. Usually contain microbodies and extrusomes.
    • Haplosporidia
      Parasites of aquatic animals. Possess distinctive spores.
    • Foraminifera
      Reticulate pseudopods with granular cytoplasm that exhibits bidirectional streaming. Form complex shells or tests that are divided into chambers; tests usually made of calcium carbonate.
    • Gromia
      Cytoplasm is nongranular. Test is organic. Filopodia are not reticulate.
    • Radiolaria
      Produce “skeletons” made of amorphous silica or, in the acantharians, made of strontium sulfate. Filopods are reinforced by microtubules.
  • Amoebozoa
    Amoeboid organisms. characterized by lobose pseudopods (not supported by internal microtubules); naked and testate forms exist.
    • Tubulinea
      Either naked or testate amoebae. Can produce tubular subcylindrical pseudopodia. Taxa lack centrosomes and flagellated stages.
    • Flabellinea
      Flat. Lack subcylindrical pseudopodia; lack centrosomes and flagellated stages.
    • Stereomyxida
      Branched or reticulate networks; trilaminate centrosomes.
    • Acanthamoebidae
      Uninucleate cells. Form nonadhesive uroids. Glycocalyx is thin. Subpseudopodia are prominent. Cysts are double-walled.
    • Entamoebida
      Lack flagella, centrioles, mitochondria, hydrogenosomes, and peroxisomes. Mitosis is closed. Possess reduced Golgi dictyosomes.
    • Mastigamoebidae
      Possess several pseudopodia and a single anterior flagellum; some life stages lack flagella. Some taxa are multinucleate. Mitochondria absent.
    • Pelomyxa
      Anaerobic, lacking mitochondria, peroxisomes, and hydrogenosomes. Express a polymorphic life cycle with multinucleate stages.
    • Eumycetozoa (slime molds)
      Produce fruiting bodies (either a sporocarp or a sorocarp) that spawn amoeboid organisms; other life stages are uninucleate amoeboflagellates, uninucleate non-flagellate amoebae, or multinucleate amoebae.
  • Opisthokonta
    Possess a posterior flagellum at some stage in the life cycle; otherwise the posterior flagellum has been secondarily lost. Usually have flattened mitochondrial cristae. The monophyletic fungi and metazoa are classified in this group.
    • Mesomycetozoa
      At least 1 life stage consisting of round cells, either flagellated or amoeboid. Some taxa are parasitic.
    • Choanomonada (choanoflagellates)
      Phagotrophic. Collar of microvilli around the single posterior flagellum. Cells may be solitary or colonial. May develop theca or lorica consisting of cellulose or silica, respectively. Group is ancestral to both fungi and metazoans .
Julia M. Diaz
Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.

microbiology, study of microorganisms, or microbes, a diverse group of generally minute simple life-forms that include bacteria, archaea, algae, fungi, protozoa, and viruses. The field is concerned with the structure, function, and classification of such organisms and with ways of both exploiting and controlling their activities.

The 17th-century discovery of living forms existing invisible to the naked eye was a significant milestone in the history of science, for from the 13th century onward it had been postulated that “invisible” entities were responsible for decay and disease. The word microbe was coined in the last quarter of the 19th century to describe these organisms, all of which were thought to be related. As microbiology eventually developed into a specialized science, it was found that microbes are a very large group of extremely diverse organisms.

Daily life is interwoven inextricably with microorganisms. In addition to populating both the inner and outer surfaces of the human body, microbes abound in the soil, in the seas, and in the air. Abundant, although usually unnoticed, microorganisms provide ample evidence of their presence—sometimes unfavourably, as when they cause decay of materials or spread diseases, and sometimes favourably, as when they ferment sugar to wine and beer, cause bread to rise, flavour cheeses, and produce valued products such as antibiotics and insulin. Microorganisms are of incalculable value to Earth’s ecology, disintegrating animal and plant remains and converting them to simpler substances that can be recycled in other organisms.

Historical background

Microbiology essentially began with the development of the microscope. Although others may have seen microbes before him, it was Antonie van Leeuwenhoek, a Dutch draper whose hobby was lens grinding and making microscopes, who was the first to provide proper documentation of his observations. His descriptions and drawings included protozoans from the guts of animals and bacteria from teeth scrapings. His records were excellent because he produced magnifying lenses of exceptional quality. Leeuwenhoek conveyed his findings in a series of letters to the British Royal Society during the mid-1670s. Although his observations stimulated much interest, no one made a serious attempt either to repeat or to extend them. Leeuwenhoek’s “animalcules,” as he called them, thus remained mere oddities of nature to the scientists of his day, and enthusiasm for the study of microbes grew slowly. It was only later, during the 18th-century revival of a long-standing controversy about whether life could develop out of nonliving material, that the significance of microorganisms in the scheme of nature and in the health and welfare of humans became evident.

Spontaneous generation versus biotic generation of life

The early Greeks believed that living things could originate from nonliving matter (abiogenesis) and that the goddess Gea could create life from stones. Aristotle discarded this notion, but he still held that animals could arise spontaneously from dissimilar organisms or from soil. His influence regarding this concept of spontaneous generation was still felt as late as the 17th century, but toward the end of that century a chain of observations, experiments, and arguments began that eventually refuted the idea. This advance in understanding was hard fought, involving series of events, with forces of personality and individual will often obscuring the facts.

Mushrooms growing in forest. (vegetable; fungus; mushroom; macrofungi; epigeous)
Britannica Quiz
Science at Random Quiz

Although Francesco Redi, an Italian physician, disproved in 1668 that higher forms of life could originate spontaneously, proponents of the concept claimed that microbes were different and did indeed arise in this way. Such illustrious names as John Needham and Lazzaro Spallanzani were adversaries in this debate during the mid-1700s. In the early half of the 1800s, Franz Schulze and Theodor Schwann were major figures in the attempt to disprove theories of abiogenesis until Louis Pasteur finally announced the results of his conclusive experiments in 1864. In a series of masterful experiments, Pasteur proved that only preexisting microbes could give rise to other microbes (biogenesis). Modern and accurate knowledge of the forms of bacteria can be attributed to German botanist Ferdinand Cohn, whose chief results were published between 1853 and 1892. Cohn’s classification of bacteria, published in 1872 and extended in 1875, dominated the study of these organisms thereafter.

Microbes and disease

Girolamo Fracastoro, an Italian scholar, advanced the notion as early as the mid-1500s that contagion is an infection that passes from one thing to another. A description of precisely what is passed along eluded discovery until the late 1800s, when the work of many scientists, Pasteur foremost among them, determined the role of bacteria in fermentation and disease. Robert Koch, a German physician, defined the procedure (Koch’s postulates) for proving that a specific organism causes a specific disease.

Are you a student?
Get a special academic rate on Britannica Premium.

The foundation of microbiology was securely laid during the period from about 1880 to 1900. Students of Pasteur, Koch, and others discovered in rapid succession a host of bacteria capable of causing specific diseases (pathogens). They also elaborated an extensive arsenal of techniques and laboratory procedures for revealing the ubiquity, diversity, and abilities of microbes.

Progress in the 20th century

All of these developments occurred in Europe. Not until the early 1900s did microbiology become established in America. Many microbiologists who worked in America at this time had studied either under Koch or at the Pasteur Institute in Paris. Once established in America, microbiology flourished, especially with regard to such related disciplines as biochemistry and genetics. In 1923 American bacteriologist David Bergey established that science’s primary reference, updated editions of which continue to be used today.

Since the 1940s microbiology has experienced an extremely productive period during which many disease-causing microbes have been identified and methods to control them developed. Microorganisms have also been effectively utilized in industry; their activities have been channeled to the extent that valuable products are now both vital and commonplace.

The study of microorganisms has also advanced the knowledge of all living things. Microbes are easy to work with and thus provide a simple vehicle for studying the complex processes of life; as such they have become a powerful tool for studies in genetics and metabolism at the molecular level. This intensive probing into the functions of microbes has resulted in numerous and often unexpected dividends. Knowledge of the basic metabolism and nutritional requirements of a pathogen, for example, often leads to a means of controlling disease or infection.

Britannica Chatbot logo

Britannica Chatbot

Chatbot answers are created from Britannica articles using AI. This is a beta feature. AI answers may contain errors. Please verify important information using Britannica articles. About Britannica AI.