Preparation of the metals
- Key People:
- Frank Harold Spedding
- Carl Gustaf Mosander
- Related Topics:
- transition metal
- gadolinium
- cerium
- lanthanum
- samarium
News •
There are several different processes of preparing the individual rare-earth metals, depending upon the given metal’s melting and boiling points (see below Properties of the metals) and the required purity of the metal for a given application. For high-purity metals (99 percent or better), the calciothermic and electrolytic processes are used for the low-melting lanthanides (lanthanum, cerium, praseodymium, and neodymium), the calciothermic process for the high-melting metals (scandium, yttrium, gadolinium, terbium, dysprosium, holmium, erbium, and lutetium, and another process (the so-called lanthanothermic process) for high-vapour-pressure metals (samarium, europium, thulium, and ytterbium). All three methods are used to prepare commercial-grade metals (95–98 percent pure).
Calciothermic method
The calciothermic process is used for all the rare-earth metals except the four with high vapour pressures—i.e., low boiling points. The rare-earth oxide is converted to the fluoride by heating it with anhydrous hydrogen fluoride (HF) gas to form RF3. The fluoride can also be made by first dissolving the oxide in aqueous HCl acid and then adding aqueous HF acid to precipitate the RF3 compound from the solution. The fluoride powder is mixed with calcium metal, placed in a tantalum crucible, and heated to 1,450 °C (2,642 °F) or higher, depending upon the melting point of R. The calcium reacts with the RF3 to form calcium fluoride (CaF2) and R. Because those two products do not mix with one another, the CaF2 floats on top of the metal. When cooled to room temperature, the CaF2 is readily separated from R. The metal is then heated in a high vacuum in a tantalum crucible to above its melting point to evaporate the excess calcium. At that point R may be further purified by sublimation or distillation. This procedure is used to prepare all the rare earths except samarium, europium, thulium, and ytterbium.
In China, calciothermic reduction on a commercial scale is commonly performed in graphite crucibles. This leads to a severe contamination of the produced metals with carbon, which readily dissolves in the molten rare-earth metals. Common oxide crucibles, such as aluminum oxide (Al2O3) or zirconia (ZrO2), are unsuitable for calciothermic reduction of the rare-earth metals because molten rare earths quickly reduce aluminum or zirconium, respectively, from their oxides, forming the corresponding rare-earth oxide.
Electrolytic method
The low-melting metals (lanthanum, cerium, praseodymium, and neodymium) may be prepared from the oxide by one of two electrolytic methods. The first method is to convert the oxide to the chloride (or fluoride) and then reduce the halide in an electrolytic cell. An electric current at a current density of about 10 A/cm2 is passed through the cell to reduce the RCl3 (RF3) to Cl2 (F2) gas at the carbon anode and liquid R metal at the molybdenum or tungsten cathode. The electrolyte is a molten salt composed of RCl3 (RF3) and NaCl (NaF). The lanthanides prepared electrolytically are not as pure as those made by the calciothermic process.
The second electrolytic process reduces the oxide directly in an RF3-LiF-CaF2 molten salt. The main problem with this process is that the oxide solubility is quite low, and it is difficult to control the oxygen solubility in the liquid salt solution.
The electrolytic process is limited to the rare-earth metals that melt below 1,050 °C (1,922 °F), because those that melt much higher react with the electrolytic cell and electrodes. As a result, the electrolytic cell and electrodes must be replaced quite often, and the produced rare-earth metals are highly contaminated.
Large commercial applications use the individual metals lanthanum for nickel–metal hydride batteries, neodymium for Nd2Fe14B permanent magnets, and misch metal for alloying agents and lighter flints. Misch metal is a mixture of the rare-earth elements that has been reduced from a rare-earth concentrate in which the rare-earth content is the same as in the mined ores (i.e., generally about 50 percent cerium, 25 percent lanthanum, 18 percent neodymium, and 7 percent praseodymium). The lanthanum and neodymium metals are prepared for the most part by the direct electrolytic reduction of the oxides. Misch metal is generally prepared by the electrolysis of the mixed RCl3.
Preparation of samarium, europium, thulium, and ytterbium: lanthanothermic process
The divalent metals europium and ytterbium have high vapour pressures—or lower boiling points than the other rare-earth elements, as can be seen when they are plotted versus atomic number—which makes it difficult to prepare them by the metallothermic or electrolytic methods. Samarium and thulium also have low boiling points, compared with the other lanthanide metals and also scandium and yttrium. The four metals with high vapour pressures are prepared by mixing R2O3 (R = samarium, europium, thulium, and ytterbium) with fine chips of lanthanum metal and placing the mixture in the bottom of a tall tantalum crucible. The mixture is heated to 1,400–1,600 °C (2,552–2,912 °F), depending on R. The lanthanum metal reacts with R2O3 to form lanthanum oxide (La2O3), and R evaporates and collects on a condenser at the top of the crucible that is about 500 °C (900 °F) colder than the reaction mixture at the bottom of the crucible. The four metals can be further purified by resubliming the metal.
Properties of the metals
As noted above, the rare-earth elements—especially the lanthanides—are quite similar. They occur together in nature, and their complete separations are difficult to achieve. However, there are some striking differences, especially in the physical properties of the pure metallic elements. For example, their melting points differ by nearly a factor of two, and the vapour pressures differ by a factor of more than one billion. These and other interesting facts are discussed below.
Crystal structures
All the rare-earth metals except europium crystallize in one of four close-packed structures. As one proceeds along the lanthanide series from lanthanum to lutetium, the crystal structures change from face-centred cubic (fcc) to hexagonal close-packed (hcp), with two intermediate structures that are composed of a mixture of both fcc and hcp layers, one being 50 percent of each (double hexagonal [dhcp]) and the other one being one-third fcc and two-thirds hcp (Sm-type). The two intermediate structures are unique among the crystal structures of all the metallic elements, while the fcc and hcp structures are quite common.
Several elements have two close-packed structures: lanthanum and cerium have the fcc and dhcp structures, samarium has the Sm-type and hcp structures, and ytterbium has the fcc and hcp structures. The existence of these structures depends upon the temperature. In addition to the close-packed structures, most rare-earth metals (scandium, yttrium, lanthanum through samarium, and gadolinium through dysprosium) have a high-temperature body-centred cubic (bcc) polymorph. The exceptions are europium, which is bcc from 0 K (−273 °C, or −460 °F) to its melting point at 822 °C (1,512 °F), and holmium, erbium, thulium, and lutetium, which are monomorphic with the hcp structure. Cerium, terbium, and dysprosium have low-temperature (below room temperature) transformations. That of cerium is due to a valence change, while those in terbium and dysprosium are magnetic in origin.
Melting points
The melting points of the lanthanide metals rapidly increase with increasing atomic number from 798 °C (1,468 °F) for cerium to 1,663 °C (3,025 °F) for lutetium (a doubling of the melting point temperatures), while the melting points of scandium and yttrium are comparable to those of the last members of the trivalent lanthanide metals. The low melting points for the light to middle lanthanides are thought to be due to a 4f electron contribution to the bonding, which is a maximum at cerium and decreases with increasing atomic number to about zero at erbium. The low melting points of europium and ytterbium are due to their divalency.
Boiling points
The boiling points of the rare-earth metals vary by nearly a factor of three. Those of lanthanum, cerium, praseodymium, yttrium, and lutetium are among the highest of all the chemical elements, while those of europium and ytterbium can be placed in the group of metals with the lowest boiling points. This large difference arises from the difference in the electronic structures of atoms in the solid metal and the respective gas. For the trivalent solid metals with the highest boiling points, the gaseous atom has three outer electrons, 5d16s2, while the divalent solid metals with the low boiling points have gaseous atoms with only two outer electrons, 6s2. The lanthanides with intermediate boiling points are trivalent solids, but their gaseous forms have only two outer electrons, 6s2. This difference in electronic states of the solid metals compared with that of their corresponding gaseous atoms accounts for the observed behaviours.
Electrical properties
The electrical resistivities of the rare-earth metals vary from 25 to 131 microohms-cm (μΩ- cm), which fall into the middle of the electrical resistance values of the metallic elements. Most trivalent rare-earth metals have values at room temperature ranging from about 60 to 90 μΩ-cm. The low value of 25 μΩ-cm is for divalent fcc ytterbium metal, while the two largest values, gadolinium (131 μΩ-cm) and terbium (115 μΩ-cm), are due to a magnetic contribution to the electrical resistivity that occurs near the magnetic ordering temperature of a material.
Lanthanum metal is the only superconducting (i.e., no electrical resistance) rare-earth metal at atmospheric pressure, while scandium, yttrium, cerium, and lutetium are also superconducting but at high pressure. The fcc modification of lanthanum becomes superconducting at Ts = 6.0 K (−267.2 °C, or −448.9 °F), while the dhcp polymorph has a Ts of 5.1 K (−268.1 °C, or −450.5 °F).
Magnetic properties
The magnetic properties of the rare-earth metals, alloys, and compounds are very dependent on the number of unpaired 4f electrons. The metals that have no unpaired electrons (scandium, yttrium, lanthanum, lutetium, and divalent ytterbium) are weakly magnetic, like many of the other non-rare-earth metals. The rest of the lanthanides, cerium through thulium, are strongly magnetic because they have unpaired 4f electrons. Hence, the lanthanides form the largest family of magnetic metals. The magnetic ordering temperature usually depends upon the number of unpaired 4f electrons. Cerium with one unpaired electron orders at about 13 K (−260 °C, or −436 °F), and gadolinium with seven (the maximum number possible) orders at room temperature. All the other lanthanide magnetic-ordering temperatures fall between those two values. Gadolinium orders ferromagnetically at room temperature and is the only element other than the 3d electron elements (iron, cobalt, and nickel) to do so. The magnetic strength, as measured by its effective magnetic moment, has a more-complicated correlation with the number of unpaired 4f electrons, because it also depends on their orbital motion. When this is taken into account, the maximum effective magnetic moment is found in dysprosium with holmium a very close second, 10.64 versus 10.60 Bohr magnetons; gadolinium’s value is 7.94.
The rare-earth metals have exotic (and sometimes complicated) magnetic structures that change with temperature. Most lanthanides have at least two magnetic structures. At room temperature gadolinium has the simplest structure. All the 4f spins are aligned in one direction parallel to one another; this structure is called ferromagnetic gadolinium. Most other lanthanide metals have 4f spins that align antiparallel to each other, sometimes fully but usually only partially; these are all called antiferromagnetic metals, whether the spins are fully or partially compensated for. In many of the antiferromagnetic structures, the spins form spiral structures.
Thermal expansion
In comparing the LCTE values of the hexagonal metals, the thermal expansion is always larger in the close-packed direction than in the planes (A, B, and C layers). The anomalously large LCTE values for europium and ytterbium again confirm the divalent nature of those two metals.