stochastic process
mathematics
- Key People:
- Norbert Wiener
- Andrey Andreyevich Markov
stochastic process, in probability theory, a process involving the operation of chance. For example, in radioactive decay every atom is subject to a fixed probability of breaking down in any given time interval. More generally, a stochastic process refers to a family of random variables indexed against some other variable or set of variables. It is one of the most general objects of study in probability. Some basic types of stochastic processes include Markov processes, Poisson processes (such as radioactive decay), and time series, with the index variable referring to time. This indexing can be either discrete or continuous, the interest being in the nature of changes of the variables with respect to time.