Organ transplants

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: graft

Organ transplants are, for a variety of reasons, more difficult to perform successfully than are most other grafts. Despite these difficulties, kidney transplant has become a routine operation in most developed countries. Heart and liver grafting have also become established, and promising results have been obtained with pancreas and combined heart–lung grafts.

The kidney

The surgery of kidney transplantation is straightforward, and the patient can be kept fit by dialysis with an artificial kidney before and after the operation. The kidney was the first organ to be transplanted successfully in humans, and experience is now considerable. Effective methods of preventing graft rejection have been available since the 1960s.

Fatal kidney disease is relatively common in young people. When there is deterioration of kidney function, eventually, despite all conventional treatment, the patient becomes extremely weak and anemic. Fluid collects in the tissues, producing swelling, known as edema, because the kidneys cannot remove excess water. Fluid in the lungs may cause difficulty in breathing and puts an excessive strain on the heart, which may already be suffering from the effects of high blood pressure as a result of kidney failure.

Waste products that cannot be removed from the body can cause inflammation of the coverings of the heart and the linings of the stomach and colon. As a result, there may be pain in the chest, inflammation of the stomach leading to distressing vomiting, and diarrhea from the colitis. The nerves running to the limbs may be damaged, resulting in paralysis. Treatment with the artificial kidney followed by kidney grafting can eliminate all these symptoms and has a good chance of permitting the dying person to return to a normal existence. Unfortunately, in most countries only a minority of patients receive this treatment because of a shortage of donor kidneys.

Artificial kidney treatment lasting about three to four hours, two to three times a week, removes all the features of kidney failure in one to two months. The patient then is able to leave the hospital and can be assessed as to suitability for a transplant. As has been mentioned, the kidney graft is heterotopic. The diseased kidneys are left in place, unless their continued presence is likely to impair the patient’s health after a successful graft.

A Yorkshire terrier dressed up as a veterinarian or doctor on a white background. (dogs)
Britannica Quiz
A Visit with the Word Doctor: Medical Vocabulary Quiz

Transplantation and postoperative care

The patient may receive a kidney from a live donor or a dead one. Cadaver kidneys may not function immediately after transplantation, and further treatment with the artificial kidney may be required for two to three weeks while damage in the transplanted kidney is repaired. The patient is given drugs that depress immune responses and prevent the graft from being rejected. Immediately after the operation, for the first week or two, every effort is made to keep the patient from contact with bacteria that might cause infection. The patient is usually nursed in a separate room, and doctors and nurses entering the room take care to wear masks and wash their hands before touching the patient. The air of the room is purified by filtration. Close relatives are allowed to visit the patient, but they are required to take the same precautions. When stitches have been removed, the patient is encouraged to get up as much as possible and to be active, but, in the first four months after the operation, careful surveillance is necessary to make sure that the patient is not rejecting the graft or developing an infection. The patient may be discharged from the hospital within a few weeks of the operation, but frequent return visits are necessary for medical examination and biochemical estimations of the blood constituents, to determine the state of function of the graft, and to make sure that the drugs are not causing side effects. Each patient requires a carefully adjusted dose of the immunosuppressive drugs that prevent transplant rejection.

Once the dosage of immunosuppressive drugs is stabilized, patients are encouraged to go back to a normal existence and return to work. The only restrictions are that they must continue to take their drugs and make frequent visits to the outpatient department for surveillance. Patients can return even to heavy work, such as driving a bulldozer, but more often a relatively light job is preferable. Women can bear children after a transplant, and men can become fathers. The course of events is not always so happy, unfortunately. If the patient rejects the kidney or develops a serious infection, it may be necessary to remove the graft and stop administration of the immunosuppressive drugs. The patient must then return to regular maintenance treatment with an artificial kidney but may receive a second or even a third graft.

Data on kidney transplant results

In kidney grafts involving identical twins, in which case rejection is not a problem, recipients have survived more than 25 years. A number of patients who have received kidneys from unrelated cadaver donors have survived more than 20 years, demonstrating that in some patients rejection can be controlled with standard immunosuppressive drugs. There has been a gradual improvement in the overall results of kidney transplants. The patient mortality has declined to around 10 percent per year, death usually being due to infection associated with immunosuppressive treatment; to complications of dialysis in patients whose kidneys have failed; or to other facets of kidney disease, such as high blood pressure and coronary artery disease. Recipients also face an increased risk of developing malignant growths, particularly lymphomas (malignant diseases of the lymphatic system). One cause of this may be related to the effects of immunosuppressive treatment. Kidney graft survival has improved since the introduction of the immunosuppressive agent cyclosporine (also called cyclosporin A), and many centres have achieved a one-year survival rate of about 96 percent and a five-year rate of about 80 percent for patients with a functioning kidney graft from an unrelated cadaver donor. One-year survival rates of 90 to 95 percent have been attained for kidney grafts from well-matched living donors. Thus, the patient who develops permanent kidney failure has a reasonable chance of successful treatment from a combination of dialysis and kidney transplantation. Those fortunate enough to receive a well-functioning kidney can expect complete rehabilitation.

The heart

The heart is a pump with a built-in power supply; it has a delicate regulatory mechanism that permits it to perform efficiently under a wide range of demands. During moments of fear or intense exercise, the heart rate increases greatly, and the contractions become more forceful. Cessation of the heartbeat has been, throughout the ages, the cardinal sign of death. Thus, it is perhaps not so surprising that there was an intense public interest when the first attempts were made at transplanting a human heart. The objectives of heart transplantation, nevertheless, are the same as those of other organ grafts.

One of the most important advances in surgery after World War II was in direct operations on the heart. Heart valves are repaired or replaced with artificial valves, and techniques have been developed so that the heart can be stopped and its function taken over temporarily by an electrical pump. If, however, the muscle of the heart is destroyed, as occurs in certain diseases, the only operation that can cure the patient is to replace the heart with a graft or possibly an artificial heart. Blockage of the coronary arteries and certain other heart muscle diseases can kill the patient because the muscle of the heart cannot contract properly. A patient with one of these diseases who is close to dying is, therefore, a possible recipient for a heart transplant.

A group of American investigators perfected the technique of heart transplantation in the late 1950s. They showed that a transplanted dog’s heart could provide the animal with a normal circulation until the heart was rejected. The features of rejection of the heart are similar to those of the kidney. The cells that produce immune reactions, the lymphocytes, migrate into the muscle cells of the heart, damage it, and also block the coronary arteries, depriving the heart of its own circulation. Some of the lymphocytes (i.e., B cells) also secrete antibodies that are toxic. In most experiments it was more difficult to prevent rejection of the heart than of the kidney. Despite this, rejection was prevented for long periods in animals. Based on this experimental work, the next step was to transplant a human heart into a patient dying of incurable heart disease. This step was taken in 1967 by a surgical team in Cape Town, South Africa.

In the years immediately following the first transplant, numerous heart allografts were performed at medical centres throughout the world. Unfortunately, many recipients succumbed to rejection of the transplanted organ. Furthermore, the heart is more sensitive to lack of blood than the kidneys are; it must be removed from the donor more quickly and can be preserved without damage for only a short period of time. Because of these difficulties—particularly the problem of rejection—the number of heart transplants performed worldwide dropped considerably after the initial excitement abated. Steady advances in detecting and treating rejection were made throughout the 1970s, however, and the introduction of the immunosuppressant cyclosporine in the 1980s brought even further improvements in the long-term survival rates for heart graft recipients. Interest in the procedure revived, and numerous heart transplants were performed. A number of patients have lived five or more years after the operation, and heart grafting has become an accepted therapy for otherwise incurable heart disease. Experimental artificial hearts have also been implanted, but these require an external power supply and long-term survival rates are not known.

The liver

The liver is a complicated organ that produces clotting factors and many other vital substances in the blood and that removes many wastes and toxic by-products from the circulation. It is, in effect, a chemical factory. The two categories of fatal liver disease that may be treated by liver grafting are nonmalignant destructive diseases of the liver cells—for example, cirrhosis—and primary liver cancer affecting either the main liver cells or the bile ducts.

The liver is extremely sensitive to lack of blood supply and must be cooled within 15 minutes of the death of the donor. If the donor liver is cooled to 4 °C within that time frame, it can last nine hours outside the human body. Advances in liver storage techniques suggest that this time can be significantly lengthened, potentially to more than 24 hours, facilitating the delivery of viable organs to patients in more distant locations.

The operation of removing the liver from a donor can be difficult, since the liver is rather large and of complex structure. Both its removal from the cadaver and its grafting into the recipient are major surgical operations. The operation is more difficult in humans than in animals—particularly, the removal of the diseased liver from the recipient. This may be much enlarged and adherent to surrounding structures so that its removal may result in serious bleeding.

Once transplanted, the liver must function immediately or the patient will die. There is no treatment available that is comparable to the use of the artificial kidney for kidney disease. If the liver functions well immediately after transplantation, the rest of the management is similar to that followed in kidney operations, and the same drugs are given. Many early liver transplantation operations failed, but an increasing number have successfully restored dying patients to normal existence. Children do especially well following liver transplantation. The commonest fatal liver disease in childhood is a congenital deficiency of bile ducts called biliary atresia. Several centres have obtained an 80 to 90 percent one-year survival in children after liver grafting, although up to 25 percent of these patients may require retransplantation because of failure of the first graft.

The lung

Chronic fatal disease of the lung is common, but the progress of the disease is usually slow, and the patient may be ill for a long time. When the lung eventually fails, the patient is likely to be unfit for a general anesthetic and an operation. The function of the lung is to allow exchange of gases between the blood and the air. The gas passes through an extremely fine membrane lining the air spaces. This exposure to air makes the lungs susceptible to infection, more so than any other organs that have been grafted. It is consequently not surprising that infection has caused failure of many lung transplants. Even a mild rejection reaction can severely damage the gas-exchange membrane, and the patient may die before the rejection is reversed. The actual ventilation of the lungs by rhythmic breathing is a complicated movement controlled by nerves connecting the brain to the lungs and to the muscles that produce the breathing. Cutting the nerves can interfere with the rhythmicity of breathing, and this may be an important cause of the difficulties of successfully transplanting both lungs. Nevertheless, these difficulties have been overcome. If only one lung is transplanted, however, the patient’s own diseased lung may interfere with the function of the graft by robbing it of air and directing too much blood into the graft. Further progress may depend on a safer, more perfect control of rejection.

The heart and lungs

The technique of transplanting the heart and both lungs as a functioning unit was developed in animal experiments at Stanford Medical Center in California. Despite the technical feasibility of the operation, rejection could not be controlled by conventional immunosuppression. With the availability of cyclosporine, researchers were able to obtain long-term survivors with combined heart–lung transplants in primate species. Applications to human patients have been remarkably successful. Approximately two-thirds of the patients who initially received transplants at Stanford survived. Other centres subsequently adopted this form of treatment for patients with severe lung fibrosis and failure of the right side of the heart, which pumps blood into the lungs. Unfortunately, many organ donors have been maintained on ventilators, a process that frequently leads to lung infections; as a consequence, the availability of donor heart–lung units is quite limited. Furthermore, the lungs are vulnerable to damage from lack of blood, and so transplantation must be performed expeditiously.

The pancreas

The pancreas consists of two kinds of tissues: endocrine and exocrine. The latter produces pancreatic juice, a combination of digestive enzymes that empty via a duct into the small intestine. The endocrine tissue of the pancreas—the islets of Langerhans—secrete the hormones insulin and glucagon into the bloodstream. These hormones are vital to the regulation of carbohydrate metabolism and exert wide-ranging effects on the growth and maintenance of body tissues. Insufficient insulin production results in type 1 diabetes mellitus, a disease that is fatal without daily injections of insulin. Even with insulin therapy, many diabetics suffer kidney failure and blindness due to the disease’s effects on the small blood vessels. A pancreas transplant can potentially prevent the progression of these complications.

Much effort has been devoted to removing the islets of Langerhans from the pancreas with a view to grafting the separated islets or even the isolated insulin-producing beta cells. Unfortunately, it is very difficult to obtain sufficient islets from the fibrotic human pancreas, and it appears that isolated islets are highly susceptible to rejection. A number of clinical attempts at islet grafting have been made.

Transplanting the vascularized pancreas has been more encouraging. It is customary to graft the body and tail of the pancreas; that is, half the pancreas is transplanted, using the splenic artery and vein for vascular anastomosis. One of the difficulties with this procedure has been dealing with the digestive juice produced by the transplanted pancreas. A further complicating factor has been the fact that corticosteroids—frequently used for immunosuppression in transplant patients—aggravate diabetes. The availability of cyclosporine permitted the avoidance of corticosteroids. Later, triple-drug immunosuppression, using cyclosporine, tacrolimus, and mycophenolate mofetil, was introduced.

Pancreas transplantation is particularly attractive when a patient with diabetic kidney failure can receive a kidney and pancreas graft from the same donor. A technique with encouraging early results has been to insert the pancreas graft very close to the patient’s own pancreas in the so-called paratopic position. This allows drainage of insulin directly into the liver, while the pancreatic juice is diverted into the stomach, where the digestive enzymes are inhibited by stomach acid. It is certainly most gratifying to patients who have been undergoing regular dialysis and taking insulin to be free from both these onerous treatments and to be permitted to eat and drink without restriction. The five-year functional survival rate for pancreas transplant is about 90 percent. It is of interest that the vascularized pancreas probably is less susceptible to rejection than the kidney.

The uterus

Women with a diseased or malformed uterus or an absent uterus are unable to bear children. Mayer-Rokitansky-Küster-Hauser syndrome (MRKH; also called Müllerian agenesis), characterized by underdevelopment or absence of the vagina and uterus, occurs in about 1 in 4,500 girls at birth. Women with MRKH cannot carry a pregnancy, though those who have functioning ovaries may choose in vitro fertilization (IVF) with use of a surrogate mother for gestation. However, researchers have explored techniques for uterus transplant as a means of enabling pregnancy in MRKH patients with functional ovaries. The first successful birth of an infant to a uterus transplant recipient, using a uterus from a living donor, occurred in 2014. Four years later the first live birth from a deceased donor uterus was reported.

In uterus transplantation with intended pregnancy, the recipient must first undergo IVF to produce embryos, which are then subjected to cryopreservation. The embryos are later transferred to the mother’s uterus once successful transplantation has been established.