yield strength
Learn about this topic in these articles:
affected by radiation
- In materials testing: Radiation
Tensile and yield strength of a type of carbon-silicon steel increase with exposure to neutron radiation, although elongation, reduction in area, and probably fracture toughness apparently decrease with exposure. Certain wood/polymeric composite materials are even prepared by a process that employs radiation. The wood is first impregnated…
Read More
alloys
- In metallurgy: Increasing strength
The most common reason for alloying is to increase the strength of a metal. This requires that barriers to slip be distributed uniformly throughout the crystalline grains. On the finest scale, this is done by dissolving alloying agents in the metal matrix (a procedure…
Read More
cement
- In cement: Strength
The tests that measure the rate at which a cement develops strength are usually made on a mortar commonly composed of one part cement to three parts sand, by weight, mixed with a defined quantity of water. Tensile tests on briquettes, shaped like a…
Read More
glass
- In industrial glass: Strength and fracturing
Glass is exceptionally strong, much stronger than most metals, when tested in the pristine state. Under pure compression, glass may undergo a more or less reversible compression but not fracture. Its theoretical strength in tension is estimated to be 14 to 35…
Read More - In industrial glass: Strengthening
Glass may be strengthened using one of several processes: temporarily reducing the severity of flaws by fire polishing or “etching” (i.e., chemical polishing); introducing surface compression by overlay glazing, thermal tempering, or ion exchange; and toughening by lamination.
Read More
inelastic response
- In mechanics of solids: Inelastic response
…stress when σ equals the yield strength level, dεp/dt is regarded as an undetermined but necessarily nonnegative parameter, which can be determined (sometimes not uniquely) only through the complete solution of a solid mechanics boundary-value problem.
Read More
materials science
- In materials science: Aluminum
…any metal are (1) its yield strength, defined as its ability to resist permanent deformation (such as a fender dent), and (2) its elastic modulus, defined as its ability to resist elastic or springy deflection like a drum head. By alloying, aluminum can be made to have a yield strength…
Read More
paper
- In papermaking: Strength and durability
The strength of paper is determined by the following factors in combination: (1) the strength of the individual fibres of the stock, (2) the average length of the fibre, (3) the interfibre bonding ability of the fibre, which is enhanced by the beating…
Read More
rocks
- In rock: Stress-strain relationships
The ultimate strength is the highest point (stress) on a stress-strain curve, often occurring at fracture (which is the complete loss of cohesion). The strength of a material is its resistance to failure (destruction of structure) by flow or fracture; it is a measure of the stress…
Read More
substitution for yield point
- In yield point
…yield point, a quantity called yield strength is substituted. Yield strength is the stress at which a material has undergone some arbitrarily chosen amount of permanent deformation, often 0.2 percent. A few materials start to yield, or flow plastically, at a fairly well-defined stress (upper yield point) that falls rapidly…
Read More
wood
- In wood: Mechanical properties
The mechanical, or strength, properties of wood are measures of its ability to resist applied forces that might tend to change its shape and size. Resistance to such forces depends on their magnitude and manner of application and to various characteristics of the wood such as moisture content…
Read More